www.wikidata.id-id.nina.az
masih banyak kesalahan penerjemahan ini perlu dirapikan agar memenuhi standar Wikipedia Tidak ada alasan yang diberikan Silakan kembangkan masih banyak kesalahan penerjemahan ini semampu Anda Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf paragraf Jika sudah dirapikan silakan hapus templat ini Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini Grafena bahasa Inggris Graphene merupakan alotrop karbon yang berbentuk lembaran tipis dimana setiap atom karbon memiliki ikatan sp2 dan struktur dalam bentuk kisi kristal seperti sarang lebah Materialini dapat umpamakan sebagai sebuah jaring jaring berskala atom yang terdiri dari atom karbon beserta ikatannya Nama grafena berasal dari GRAPHITE ENE grafit sendiri terdiri dari banyak lembaran grafena yang ditumpuk secara bersama Pada tahun 2010 Andre K Geim dan Konstantin Novoselov mendapat hadiah Nobel di bidang kimia karena percobaan tentang material 2 dimensi graphene Grafena yang terdiri dari atom karbonIkatan karbon karbon pada grafena adalah sekitar 0 142 nm Grafena merupakan unsur dasar dari alotrop karbon meliputi grafit tabung nano karbon dan fulerena Grafena juga dapat dianggap sebagai molekul aromatik yang sangat besar yang merupakan kelompok senyawa hidrokarbon polisiklik aromatik datar Daftar isi 1 Sejarah Penemuan Grafena 2 Penjelasan 3 Grafena Sintesis Graphene Synthesis 3 1 Pertumbuhan Epitaksial 3 2 Reduksi Silikon Karbida 3 3 Reduksi Hidrazina 3 4 Reduksi Etanol 4 Sifat sifat Grafena 4 1 Struktur Atom 4 2 Sifat Elektronik 4 3 Sifat Optik 4 4 Sifat Mekanik 4 5 Transport Spin Pada Grafena 4 6 Efek Magnetik 4 7 Transport Elektron Pada Grafena 4 8 Grafena Oksida 4 9 Modifikasi Kimia 5 Aplikasi 5 1 Pendeteksi molekul gas tunggal 5 2 Ultrakapasitor 5 3 Nanoribon Grafena 5 4 Transistor Grafena 6 Referensi 7 Lihat pula 8 Pranala luarSejarah Penemuan Grafena SuntingPada tahun 2004 kelompok riset dari Institut Teknologi Massachusetts yang dipimpin oleh Andre K Geim dan Konstantin Novoselov menemukan suatu material semikonduktor yang disebut Graphene Grafena Bahan yang merupakan alotrop karbon ini mempunyai ketebalan hanya satu atom saja dan lebih kuat daripada baja yaitu karbon yang disusun menyamping pada kisi yang menyerupai sarang lebah Segi 6 dan diperkirakan sebagai bahan semikonduktor tertipis di Dunia Lapisan tunggal dari grafit sebelumnya sekitar tahun 1910an ditumbuhkan secara epitaksial di atas material material lainnya dan biasa di sebut grafena epitaksial Grafena epitaksial ini mengandung lapisan setebal satu atom berbentuk heksagonal dengan ikatan sp2 antar atom karbonnya Pada proses penumbuhan kristal grafena ini terjadi transfer muatan dari substrat ke grafena epitaksial dan dalam beberapa kasus terjadi hibridisasi orbital d dari atom substrat dengan orbital pi dari grafena yang secara signifikan mengubah struktur elektronik grafena Penjelasan SuntingGrafena yang sempurna secara eksklusif terdiri dari sel sel yang berbentuk heksagonal sel berbentuk segi lima dan segi tujuh merupakan sel yang cacat Jika terdapat sel bersegi lima yang terisolasi maka bidang akan mengkerut menjadi berbentuk kerucut penyisipan 12 segi lima akan membentuk fulerena Demikian pula penyisipan sel segi tujuh yang terisolasi menyebabkan lembaran menjadi berbentuk pelana Penambahan yang terkontrol dari segi lima dan segi tujuh memungkinkan terbentuknya berbagai bentuk komplek misalnya carbon nanobud Tabung nano karbon berdinding tunggal dapat dianggap sebagai silinder grafena yang sebagian kecil memiliki tutup berbentuk setengah bola yang melibatkan 6 segi lima di setiap ujungnya Grafena Sintesis Graphene Synthesis SuntingTelah diperhitungkan bahwa fragmen fragmen kecil lembaran grafena dihasilkan bersamaan dengan serpihan lainnya ketika grafit dikikis misalnya ketika menggambar garis dengan pensil 1 Namun fisikawan dari Universitas Manchester dan Institute for Microelectronics Technology Chernogolovka Russia yang pertama kali mengisolasi dan mempelajari grafena daripada hidrokarbon aromatik polisiklik pada tahun 2004 Selain itu pada publikasi dalam jurnal ilmiah Science 2 mereka juga mendefinisikan grafena sebagaiGrafena adalah nama yang diberikan pada satu lapisan atom karbon yang dipadatkan dalam struktur cincin benzena dan secara luas digunakan untuk menggambarkan sifat sifat banyak bahan berbasis karbon termasuk grafit fulerena besar nanotube dll Misalnya Nanotube karbon biasanya dianggap sebagai lembaran graphene digulung menjadi silinder berukuran nanometer geometri silinder Planar grafena sendiri telah dianggap tidak ada dalam keadaan bebas menjadi tidak stabil sehubungan dengan pembentukan struktur melengkung seperti jelaga fulerena dan nanotube Grafena sampai saat ini merupakan bahan paling mahal di Bumi dengan sebuah sampel yang dapat diletakkan di potongan rambut manusia memakan biaya lebih dari 1 000 Sama dengan Rp 14 061 891 April 2008 3 Harga grafena dapat menurun drastis apabila metode produksi komersial yang akan dikembangkan pada masa depan Pertumbuhan Epitaksial Sunting Metode ini pada prinsipnya menggunakan suatu substrat sebagai bibit pertumbuhan grafena Hal ini dikenal sebagai pertumbuhan epitaksial Metode ini mempunyai kelemahan diantaranya tidak menghasilkan lembaran lembaran grafena dengan ketebalan yang seragam Selain itu ikatan antara lembaran grafena bagian bawah dengan substrat dapat memengaruhi sifat sifat lapisan karbon 4 Reduksi Silikon Karbida Sunting Grafena sintesis dapat juga dilakukan dengan metode reduksi silikon karbida yaitu dengan cara memanaskan silikon karbida pada temperatur tinggi Sekitar 1100 C untuk mereduksinya menjadi grafena Proses ini menghasilkan sampel berukuran kecil yang tidak memungkinkannya digunakan pada teknik fabrikasi kebanyakan aplikasi elektronik Reduksi Hidrazina Sunting Para peneliti telah mengembangkan suatu metode meletakkan kertas grafena oksida Graphene oxide dalam larutan hidrazin murni suatu senyawa kimia yang mengandung nitrogen dan hidrogen yang akan mereduksi kertas grafit oksida menjadi grafena berlapis tunggal 5 Reduksi Etanol Sunting Publikasi baru baru ini telah menjelaskan proses grafena sintesis dalam jumlah gram yaitu dengan mereduksi etanol oleh logam natrium diikuti dengan pirolisis produk etoksida kemudian mencucinya dengan air untuk menghilangkan garam garam natrium 6 Sifat sifat Grafena SuntingStruktur Atom Sunting Struktur atom grafena dapat dikaji dengan menggunakan mikroskop elektron transmisi Bahasa Inggris Transmission electron microscope dengan lembar grafena disuspensi di antara kisi logam 7 Pola pola difraksi elektron menunjukkan kisi heksagonal grafena seperti yang diharapkan Grafena yang tersuspensi juga menunjukkan adanya riakan rippling pada lembaran datar grefena tersebut dengan amplitudo sekitar satu nanometer Secara intrinsik riakan ini diakibatkan oleh ketidakstabilan kristal dua dimensi 8 9 10 ataupun secara ekstrinsik berasal dari kotoran yang terlihat pada gambar TEM grafena Gambar beresolusi atom dalam ruang nyata dari grafena berlapis tunggal pada substrat silikon dioksida didapatkan 11 12 dengan menggunakan mikroskop penerowongan payaran scanning tunneling microscope Grafena yang diproses menggunakan teknik litografi diselimuti oleh residu fotoresistor yang harus dibersihkan untuk mendapatkan gambar beresolusi atomik 11 Residu tersebut kemungkinan merupakan adsorbat yang terpantau pada gambar TEM dan dapat menjelaskan riakan yang terpantau pada grafena Riakan grafena pada permukaan silikon dioksida ditentukan oleh konformasil grafena terhadap silikon dioksida dan bukan merupakan efek intrinsik 11 Sifat Elektronik Sunting Grafena sangat berbeda dari kebanyakan bahan tiga dimensi konvensional Secara intrinsik grafena merupakan semilogam atau semikonduktor bersela energi nol Hubungan E k grafena adalah linear untuk energi rendah yang berada dekat dengan enam sudut zona Brilloiun heksagonal dua dimensi mengakibatkan massa efektif elektron dan lubang heksagonalnya nol 13 Oleh karena hubungan dispersi relatif linear ini pada energi rendah elektron dan lubang yang dekat enam titik ini memiliki sifat sifat partikel relativistik yang dijelaskan oleh persamaan Dirac untuk partikel dengan spin 1 2 14 Oleh karena itu elektron dan lubang heksagonalnya disebut fermion Dirac dan enam sudut dari zona Brillouin disebut titik Dirac 13 Persamaan yang menjelaskan hubungan E k adalah E ℏ v F k x 2 k y 2 displaystyle E hbar v F sqrt k x 2 k y 2 nbsp di mana v f displaystyle v f nbsp adalah kecepatan Fermi yang nilainya sekitar 10 6 m s displaystyle 10 6 mathrm m mathrm s nbsp 14 Sifat Optik Sunting nbsp Foto grafena pada cahaya yang terpancar Kristal setebal satu atom ini dapat dilihat dengan mata telanjang karena ia menyerap kira kira 2 3 cahaya putih yang merupakan p kali tetapan struktur halus Sifat sifat elektronik grafena yang unik menyebabkannya memiliki opasitas yang tinggi untuk sebuah bahan ekalapis atomik Ia menyerap pa 2 3 cahaya putih dengan a adalah tetapan struktur halus 15 16 Hal ini telah dikonfirmasikan secara eksperimen tetapi pengukurannya tidak cukup akurat untuk mengizinkan kemajuan yang berarti pada teknik penentuan tetapan struktur halus lainnya 17 Sifat Mekanik Sunting Grafena merupakan bahan yang paling kuat yang diketahui oleh manusia menurut penelitian yang dikeluarkan oleh Universitas Columbia pada Agustus 2008 Namun proses pemisahan grafena dari grafit masih memerlukan pengembangan teknologi lainnya sebelum ia cukup ekonomis untuk digunakan pada proses industri 18 Dengan menggunakan mikroskop gaya atom penelitian terkini tentang grafena telah dapat mengukur tetapan pegas lembaran lembaran grafena yang disuspensi Lembaran grafena yang diikat oleh gaya van der Waals disuspensi pada rongga rongga silikon dioksida di mana digunakan AFM untuk menguji sifat mekanik dari grafena Tetapan pegas yang terukur berkisar antara 1 5 N m dengan Modulus Young sebesar 0 5 TPa berbeda dari grafit yang meruah Nilai nilai yang tinggi ini membuat grafena sangat kuat dan kaku Sifat inilah yang memungkinkan grafena dimanfaatkan untuk aplikasi NEMS seperti sensor tekanan dan resonator 19 Sebagaimana dengan bahan material lainnya daerah daerah tertentu pada grafena mengalami fluktuasi kuantum dan termal pada pergeseran relatifnya Walaupun amplitudo fluktuasi ini terbatas pada struktur 3D nya bahkan untuk ukuran tak terhingga teorema Mermin Wagner menunjukkan bahwa amplitudo fulktuasi berpanjang gelombang panjang akan meningkat secara logaritmik terhadap struktur 2D nya sehingga ia akan menjadi tidak terbatas pada struktur yang berukuran tak terhingga Deformasi tempatan dan regangan elastik dipengaruhi oleh divergensi yang berkisaran panjang pada pergeseran relatif ini Dipercayai bahwa dengan struktur 2D yang cukup besar ia akan melentuk dan mengusut membentuk struktur 3D yang berfluktuasi jika tidak terdapat tegangan lateral yang diberikan Para peneliti telah memantau riakan pada lapisan lapisan grafena yang disuspensi 7 dan diajukan bahwa riakan riakan ini diakibatkan oleh fluktuasi termal pada bahan Oleh karena deformasi dinamis ini terdapat perdebatan apakah grafena benar benar berstruktur 2D 8 9 10 Transport Spin Pada Grafena Sunting Grafena dianggap sebagai bahan yang ideal untuk spintronik oleh karena interaksi orbit spin yang kecil dan hampir tidak adanya momen magnet inti dalam karbon Injeksi spin arus listrik dan deteksi pada grafena telah didemonstrasikan pada suhu kamar 20 21 22 Koherensi spin yang lebih besar daripada satu telah terpantau pada suhu kamar 20 dan kontrol polaritas arus spin yang melewati gerbang listrik telah diamati pada temperatur rendah 21 Efek Magnetik Sunting Selain mobilitasnya yang tinggi dan Konduktivitas yang minimum grafena menunjukkan perilaku sangat menarik dalam suatu medan magnetik Grafena menunjukkan ketidak normalan efek kuantum Hall dengan urutan dialihkan oleh 1 2 displaystyle 1 2 nbsp Dengan demikian konduktivitas Hall adalah s x y 4 N 1 2 e 2 h displaystyle sigma xy pm 4 left N 1 2 right e 2 h nbsp di mana N displaystyle N nbsp adalah index level rendah dan dengan menurunkan spin ganda akan dihasilkan faktor 4 displaystyle 4 nbsp ini dapat diukur pada temperatur kamar 12 Grafena dua lapis juga menunjukkan efek kuantum Hall tetapi dengan urutan standar di mana s x y 4 N e 2 h displaystyle sigma xy pm 4Ne 2 h nbsp Menariknya level yang tinggi pertama N 0 displaystyle N 0 nbsp adalah tidak ada yang mengindikasikan bahwa graphene bilayer tetap pada keadaan logam dan terdapat pada titik netral 23 Transport Elektron Pada Grafena Sunting Tiap atom karbon dalam grafena mempunyai satu orbital s dan tiga orbital p Satu orbital s dan dua orbital p digunakan untuk membentuk ikatan kovalen yang kuat dan tidak berkontribusi dalam konduktivitas sedangkan satu elektron bebas yang berada pada subkulit p membentuk orbital phi yang tegak lurus dengan lembaran grafena yang akhirnya akan menentukan sifat sifat elektrik dari grafena Elektron elektron ini seperti tidak memiliki massa seperti partikel partikel tanpa massa yang digambarkan dalam teori relativitas e mc2 Hasil percobaan dari pengukuran transpor elektron menunjukkan bahwa grafena memiliki mobilitas elektron yang tinggi pada suhu ruang dengan nilai lebih dari 15 000cm2 V 1 s 1 12 Grafena Oksida Sunting Dengan mengoksidasi secara kimiawi grafena dan kemudian merendamnya di air lapisan lapisan grafena akan membentuk lembaran single dengan ikatan yang sangat kuat Lembaran lembaran ini disebut Graphene Oxida Paper dengan keteraturan tensile modulus sebesar 32 GPa 24 Modifikasi Kimia Sunting Larutan fragmen fragmen dari grafena dapat dipreparasi di laboratorium melalui modifikasi kimia dari grafit 25 Pertama mikrokristalin grafit diperlakukan dengan campuran asam kuat yaitu asam sulfat dan asam nitrat Serangkaian tahap tahap meliputi oksidasi hasil pengelupasannya berupa plat kecil dari grafena dengan gugus karboksil pada bagian tepinya Kemudian berubah menjadi gugus asam klorida dengan penambahan tionyl klorida kemudian dikonversi menjadi grafena amida yang sesuai dengan cara mentreatment dengan oktadecylamine Ahirnya menghasilkan meterial berupa lembaran grafena berbentuk lingkaran dengan ketebalan 5 3 Angstrom yang larut dalam tetrahidrofuran tetraklorometana dan dikloroetana Aplikasi SuntingPendeteksi molekul gas tunggal Sunting Grafena dapat digunakan sebagai sensor yang sangat baik untuk menentukan struktur 2Dimensi di mana keseluruhan isi grafena memiliki permukaan yang besar membuat grafena sangat efisien untuk mendeteksi molekul yang diadsorpsi Lokasi dari adsorpsi mengalami perubahan dalam tahanan listrik Saat efek ini terjadi dalam material lain grafena memiliki keunggulan karena mempunyai konduktivitas listrik yang tinggi dan rendahnya gangguan yang membuat grafena ini tidak mengalami perubahan dalam mendeteksi 26 Ultrakapasitor Sunting Menurut Prof Rod Ruoff grafena memiliki luas permukaan 2630 M2 gram dapat membentuk lapisan lapisan dan menghasilkan ruang ruang yang dapat menyimpan energi sehingga bisa digunakan sebagai ultrakapasitor Ultrakapasitor dari grafena ini mempunyai rapat massa yang tinggi dibandingkan dengan kapasitor kapasitor dielektrik konvensional Selain itu ultrakapasitor dari grafena memiliki range yang besar dalam menangkap energi dan menyimpan energi tersebut sehingga dapat pula dijadikan sebagai sumber daya primer bila dikombinasikan dengan aki atau sel bahan bakar Ultrakapasitor dari grafena dapat menangkap kembali energi yang terbuang dengan mengubah energi kinetik menjadi energi potensial sehingga akan mengurangi kalor yang terbuang Industri dapat mengurangi energi yang terbuang dengan memasang ultrakapasitor dalam mesin mesin produksi dan dapat pula diterapkan pada bus truk dan kereta api 27 Nanoribon Grafena Sunting Graphene Nanoribbons GNRs adalah lapisan tunggal yang esensial dari grafena yang dipotong dengan pola tertentu untuk menghasilkan sifat sifat listrik tergantung dari tepi lembaran tersebut dapat berbentuk Z atau armchair Berdasarkan perhitungan prediksi tigh binding bahwa GNR yang zigzag bersifat logam sedangkan armchair dapat bersifat logam ataupun semilogam tergantung lebarnya GNR dapat mempunyai sifat logam hingga semikonduktor tergantung chiralitynya GNR bertepi zigzag bersifat logam dengan bentuk khas pada kedua sisinya tanpa memperhatikan lebarnya Sementara GNR bertepi armchair dapat bersifat logam ataupun semikonduktor tergantung pada lebar NA GNR armchair akan bersifat logam jika NA 3k 2 k adalah bilangan bulat dan jika tidak maka bersifat semikonduktor Akhir akhir ini bermacam macam junction seperti bentuk L bentuk T dan bentuk Z di dasarkan pada dua jenis GNR yang telah diusulkan tersebut Walaupun junction junction ini memiliki bentuk geometri yang sama dengan junction Quasi satu dimensi yang lain keadaan elektronnya sangat berbeda dari junction yang lain karena pada GNR elektron elektronnya mempunyai sifat yang khas Perhitungan DFT akhir akhir ini memperlihatkan nanoribbons armchair bersifat semikonduktor dengan skala energi GAP nya berbanding terbalik dengan lebarnya 28 Hasil eksperimen memperlihatkan bahwa energi GAP benar benar meningkat dengan menurunnya lebar GNR 29 Meskipun demikian tidak ada data eksperimen yang mengukur energi GAP dari suatu GNR dan mengidentifikasi dengan tepat struktur tepinya 30 Nanoribbons zigzag juga bersifat semikonduktor dan memiliki spin tepi yang terpolarisasi Struktur 2Dnya memiliki daya hantar listrik dan termal yang tinggi dengan ganguan yang kecil memungkinkan GNR digunakan sebagai alternatif pengganti tembaga untuk sambungan sambungan sirkuit tembaga Beberapa penelitian juga dilakukan untuk membuat Quantum dots dengan mengubah lebar GNR pada titik tertentu disepanjang pita untuk membuat quantum confinement 31 Transistor Grafena Sunting Transistor grafena sudah ditemukan sejak 2 tahun yang lalu namun transistor tersebut masih mengalami kebocoran dan memengaruhi penampilan atau performa jika digunakan pada chip komputer akan tetapi setelah dua tahun berikutnya kebocoran dari graphene dapat ditutupi dan telah diciptakan transistor grafena yang benar benar stabil Transistor grafena memiliki kelebihan dibandingkan dengan material lain seperti silikon diantaranya tidak cepat membusuk dan tidak cepat teroksidasi 32 Kurang lebihnya seperti ituReferensi Sunting bits of graphene are undoubtedly present in every pencil mark Carbon Wonderland Scientific American April 2008 Diarsipkan 2008 11 22 di Wayback Machine Novoselov K S et al Electric Field Effect in Atomically Thin Carbon Films Science 306 666 2004 doi 10 1126 science 1102896 Carbon Wonderland Scientific American April 2008 Diarsipkan 2008 11 22 di Wayback Machine A smarter way to grow graphene PhysOrg com May 2008 Diarsipkan 2012 01 28 di Wayback Machine Researchers discover method for mass production of nanomaterial graphene PhysOrg com Nov 2008 Diarsipkan 2009 01 04 di Wayback Machine Choucair Mohammad 2008 Gram scale production of graphene based on solvothermal synthesis and sonication Nature Nanotechnology doi 10 1038 nnano 2008 365 a b Kesalahan pengutipan Tag lt ref gt tidak sah tidak ditemukan teks untuk ref bernama Meyer07 a b Carlsson J M Graphene Buckle or break Nature Materials 6 11 801 802 2007 a b Fasolino A Los J H amp Katsnelson M I Intrinsic ripples in graphene Nature Materials 6 11 858 861 2007 a b Kesalahan pengutipan Tag lt ref gt tidak sah tidak ditemukan teks untuk ref bernama RiseGraphene a b c Ishigami Masa 11 May 2007 Atomic Structure of Graphene on SiO2 PDF Nano Lett 7 6 1643 1648 doi 10 1021 nl070613a Parameter coauthors yang tidak diketahui mengabaikan author yang disarankan bantuan Periksa nilai tanggal di date bantuan a b c Stolyarova Elena 21 May 2007 High resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface Proceedings of the Natioanl Academy of Sciences 104 9209 9212 doi 10 1073 pnas 0703337104 PMID 17517635 Diarsipkan dari versi asli tanggal 2023 08 08 Diakses tanggal 2009 01 05 Parameter coauthors yang tidak diketahui mengabaikan author yang disarankan bantuan Periksa nilai tanggal di date bantuan a b J C Charlier P C Eklund J Zhu and A C Ferrari Electron and Phonon Properties of Graphene Their Relationship with Carbon Nanotubes from Carbon Nanotubes Advanced Topics in the Synthesis Structure Properties and Applications Ed By A Jorio G Dresselhaus and M S Dresselhaus Berlin Heidelberg Springer Verlag 2008 a b Avouris P Chen Z and Perebeinos V Carbon based electronics Nature Nano 2 605 613 2007 Kuzmenko A B van Heumen E Carbone F van der Marel D 2008 Universal infrared conductance of graphite Phys Rev Lett 100 117401 2008 doi 10 1103 PhysRevLett 100 117401 Nair R R Blake P Grigorenko A N Novoselov K S Booth T J Stauber T Peres N M R Geim A K 2008 004 03 Fine Structure Constant Defines Visual Transparency of Graphene Science 320 1308 doi 10 1126 science 1156965 PMID 18388259 Periksa nilai tanggal di date bantuan Graphene Gazing Gives Glimpse Of Foundations Of Universe ScienceDaily 2008 04 04 diarsipkan dari versi asli tanggal 2008 04 06 diakses tanggal 2008 04 06 TOUGHEST STUFF KNOWN TO MAN DISCOVERY OPENS DOOR TO SPACE ELEVATOR Diarsipkan 2008 09 06 di Wayback Machine By BILL SANDERSON nypost com August 25 2008 Frank I W Tanenbaum D M Van Der Zande A M and McEuen P L Mechanical properties of suspended graphene sheets J Vac Sci Technol B 25 2558 2561 2007 a b Tombros Nikolaos 2 August 2007 Electronic spin transport and spin precession in single graphene layers at room temperature Nature PDF Parameter format membutuhkan url bantuan 448 571 575 doi 10 1038 nature06037 Parameter coauthors yang tidak diketahui mengabaikan author yang disarankan bantuan Periksa nilai tanggal di date bantuan a b Cho Sungjae 19 September 2007 Gate tunable Graphene Spin Valve Applied Physics Letters 91 123105 doi 10 1063 1 2784934 Parameter coauthors yang tidak diketahui mengabaikan author yang disarankan bantuan Periksa nilai tanggal di date bantuan Ohishi Megumi 22 June 2007 Spin Injection into a Graphene Thin Film at Room Temperature Jpn J Appl Phys 46 L605 L607 doi 10 1143 JJAP 46 L605 Parameter coauthors yang tidak diketahui mengabaikan author yang disarankan bantuan Periksa nilai tanggal di date bantuan Novoselov K S et al Two dimensional gas of massless Dirac fermions in graphene Nature 438 197 200 2005 Graphene Oxide Paper Technology Transfer Program Northwestern University Diarsipkan dari versi asli tanggal 2007 06 19 Diakses tanggal 2009 01 04 Sandip Niyogi Elena Bekyarova Mikhail E Itkis Jared L McWilliams Mark A Hamon and Robert C Haddon Solution Properties of Graphite and Graphene J Am Chem Soc 128 24 pp 7720 7721 2006 Communication doi 10 1021 ja060680r Schedin F et al Detection of individual gas molecules adsorbed on graphene Nature Mater 6 652 655 2007 Stoller Meryl D 22 August 2008 Graphene Based Ultracapacitors PDF Diarsipkan dari versi asli PDF tanggal 2013 03 20 Diakses tanggal 2009 01 05 Parameter coauthors yang tidak diketahui mengabaikan author yang disarankan bantuan Periksa nilai tanggal di date bantuan Barone V Hod O and Scuseria G E Electronic Structure and Stability of Semiconducting Graphene Nanoribbons Nano Lett 6 2748 2006 Han M Y Ozyilmaz B Zhang Y and Kim P Energy Band Gap Engineering of Graphene Nanoribbons Phys Rev Lett 98 206805 2007 As of Thursday February 28 2008 Wang Z F Shi Q W Li Q Wang X Hou J G Zheng H et al Z shaped graphene nanoribbon quantum dot device Applied Physics Letters 91 5 053109 2007 Graphene transistors clocked at 26 GHz Arxiv article Diarsipkan dari versi asli tanggal 2009 02 01 Diakses tanggal 2009 01 05 Lihat pula SuntingGrafit Karbon Hidrokarbon Alotrop Transistor AromatikPranala luar Sunting Inggris silikon out graphene in pranala nonaktif permanen Inggris Nano balon yang sempurna Diarsipkan 2008 12 18 di Wayback Machine Inggris Mentoknya ukuran semikonduktor sudah mulai mendapat titik terang Diarsipkan 2009 08 22 di Wayback Machine Inggris Transistor terkecil dibuat dari Goresan pensil Diarsipkan 2008 12 22 di Wayback Machine Inggris Membuktikan teori Einstein dengan pensil Diarsipkan 2020 12 18 di Wayback Machine Inggris Epitaxial graphene Lab Diarsipkan 2008 12 11 di Wayback Machine Diperoleh dari https id wikipedia org w index php title Grafena amp oldid 23976922