www.wikidata.id-id.nina.az
Kesetimbangan kelarutan adalah sejenis kesetimbangan dinamis yang ada bila senyawa kimia dalam keadaan padat berada dalam kesetimbangan kimia dengan larutannya Padatan dapat larut tanpa perubahan disertai disosiasi atau disertai reaksi kimia dengan konstituen lain seperti asam atau basa Setiap jenis kesetimbangan dicirikan oleh konstanta kesetimbangan yang bergantung pada suhu Kesetimbangan kelarutan penting dalam skenario farmasi lingkungan dan banyak lainnya Daftar isi 1 Definisi 1 1 Efek fase 1 2 Efek ukuran partikel 1 3 Efek garam 1 4 Efek suhu 1 5 Efek tekanan 2 Pelarutan sederhana 3 Pelarutan disertai disosiasi 3 1 Hidroksida 3 2 Efek ion sejenis 4 Pelarutan dengan reaksi 5 Penentuan eksperimental 5 1 Metode statis 5 2 Metode dinamis 6 Lihat juga 7 Referensi 8 Pranala luarDefinisi suntingSuatu kesetimbangan kelarutan ada bila senyawa kimia dalam keadaan padat berada dalam kesetimbangan dengan larutan dari senyawa tersebut Kesetimbangan tersebut adalah contoh kesetimbangan dinamis dimana beberapa molekul individu bermigrasi antara fase padat dan larutan sehingga laju pelarutan dan pengendapan setimbang satu sama lain Ketika kesetimbangan tercapai larutannya dikatakan jenuh Konsentrasi zat terlarut dalam larutan jenuh dikenal sebagai kelarutan Satuan kelarutan dapat dinyatakan dalam molar mol dm 3 atau mol L 1 atau dinyatakan sebagai massa per satuan volume seperti mg mL 1 Kelarutan tergantung pada suhu Larutan yang mengandung konsentrasi zat terlarut lebih tinggi daripada kelarutannya dikatakan superjenuh Larutan superjenuh dapat diinduksi untuk mencapai kesetimbangan dengan penambahan benih yang mungkin merupakan kristal mungil dari zat terlarut atau partikel padat kecil yang menginisiasi pengendapan Ada tiga tipe utama kesetimbangan kelarutan Pelarutan disolusi sederhana Disolusi disertai disosiasi Ini adalah ciri khas garam Konstanta kesetimbangan dalam kasus ini dikenal sebagai produk kelarutan Pelarutan disertai reaksi Ini adalah karakteristik pelarutan asam lemah atau basa lemah dalam media berair dengan berbagai pH Dalam setiap kasus konstanta kesetimbangan dapat ditentukan sebagai kuosien aktivitas Konstanta kesetimbangan ini nirdimensi karena aktivitas adalah kuantitas tanpa dimensi Namun penggunaan aktivitas sangat merepotkan sehingga konstanta kesetimbangan biasanya dibagi dengan kuosien koefisien aktivitas untuk menjadi kuosien konsentrasi Lihat Kimia kesetimbangan bagian Konstanta kesetimbangan untuk lebih jelasnya Selain itu konsentrasi pelarut biasanya dianggap konstan dan juga dimasukkan ke dalam konstanta kesetimbangan Untuk alasan ini konstanta kesetimbangan kelarutan memiliki dimensi yang terkait dengan skala konsentrasi yang diukur Konstanta kelarutan yang didefinisikan dalam hal konsentrasi tidak hanya bergantung pada suhu tetapi juga dapat bergantung pada komposisi pelarut bila pelarut mengandung juga spesies selain yang berasal dari zat terlarut Efek fase sunting Kesetimbangan didefinisikan untuk fase kristal tertentu Oleh karena itu produk kelarutan diharapkan berbeda tergantung pada fase padatnya Misalnya aragonit dan kalsit akan memiliki produk kelarutan yang berbeda meskipun keduanya memiliki identitas kimia yang sama kalsium karbonat Dalam kondisi tertentu satu fase akan lebih stabil secara termodinamika daripada yang lainnya oleh karena itu fase ini akan terbentuk saat kesetimbangan termodinamika terbentuk Namun faktor kinetik mungkin mendukung pembentukan endapan yang tidak menguntungkan misalnya aragonit yang kemudian dikatakan berada dalam keadaan metastabil Efek ukuran partikel sunting Konstanta kelarutan termodinamika didefinisikan untuk kristal tunggal besar Kelarutan akan meningkat dengan menurunkan ukuran partikel atau tetesan terlarut karena adanya tambahan energi permukaan Efek ini umumnya kecil kecuali partikel menjadi sangat kecil biasanya lebih kecil dari 1 mm Efek ukuran partikel terhadap konstanta kelarutan dapat dihitung sebagai berikut log K A log K A 0 g A m 3 454 R T displaystyle log K A log K A to 0 frac gamma A mathrm m 3 454RT nbsp dengan KA adalah konstanta kelarutan untuk partikel terlarut dengan luas permukaan molar A KA 0 adalah konstanta kelarutan untuk bahan dengan luas permukaan molar yang mendekati nol yaitu bila partikelnya besar g adalah tegangan permukaan partikel terlarut dalam pelarut Am adalah luas permukaan molar zat terlarut dalam m2 mol R adalah konstanta gas universal dan T adalah suhu mutlak 1 Efek garam sunting Efek garam 2 mengacu pada fakta bahwa adanya garam yang tidak memiliki ion yang sama dengan zat terlarut memiliki efek pada kekuatan ion larutan dan karenanya berpengaruh pula pada koefisien aktivitas sehingga konstanta kesetimbangan dinyatakan sebagai hasil pengukuran konsentrasi berubah Efek suhu sunting nbsp Kelarutan peka terhadap perubahan suhu Misalnya gula lebih mudah larut dalam air panas dibanding air dingin Hal ini terjadi karena konstanta kelarutan seperti jenis konstanta kesetimbangan lainnya adalah fungsi suhu Sesuai dengan Prinsip Le Chatelier bila proses pelarutannya bersifat endotermik menyerap kalor kelarutan meningkat seiring dengan kenaikan suhu Efek ini adalah dasar untuk proses rekristalisasi yang dapat digunakan untuk memurnikan senyawa kimia Bila pelarutan bersifat eksotermik melepas kalor kelarutan menurun seiring dengan kenaikan suhu 3 Natrium sulfat menunjukkan kelarutan yang meningkat pada suhu di bawah sekitar 32 4 C namun terjadi penurunan kelarutan pada suhu yang lebih tinggi 4 Hal ini karena fasa padatnya adalah dekahidrat Na2SO4 10H2O di bawah suhu transisi namun hidrat berbeda di atas suhu tersebut Efek tekanan sunting Untuk fase terkondensasi padatan atau cairan kelarutan bergantung tekanan merupakan biasanya lemah dan pada prakteknya dapat diabaikan Dengan mengasumsikan larutan ideal kebergantungan dapat dihitung sebagai ln N i P T V i a q V i c r R T displaystyle left frac partial ln N i partial P right T frac V i mathrm aq V i mathrm cr RT nbsp dengan indeks i mengulangi komponennya Ni adalah fraksi mol dari komponen ke i dalam larutan P adalah tekanan indeks T mengacu pada suhu konstan Vi aq adalah volume molar parsial komponen ke i dalam larutan Vi cr adalah volume molar parsial komponen ke i dalam padatan terlarut dan R adalah konstanta gas universal 5 Kelarutan yang bergantung tekanan kadang kadang memiliki signifikansi praktis Misalnya pengerakan en dari ladang dan sumur minyak oleh kalsium sulfat yang menurunkan kelarutannya dengan penurunan tekanan dapat menyebabkan penurunan produktivitas seiring berjalannya waktu Pelarutan sederhana suntingPelarutan padatan organik dapat dijelaskan sebagai kesetimbangan zat tersebut sebagai padatan dan terlarutnya Sebagai contoh ketika sukrosa gula pasir membentuk larutan jenuh C 12 H 22 O 11 s C 12 H 22 O 11 aq displaystyle ce C12H22O11 s lt gt C12H22O11 aq nbsp Pernyataan kesetimbangan untuk reaksi ini dapat ditulis seperti untuk reaksi kimia umumnya produk terhadap reaktan K C 12 H 22 O 11 a q C 12 H 22 O 11 s displaystyle K ominus frac left mathrm C 12 H 22 O 11 aq right left mathrm C 12 H 22 O 11 s right nbsp dengan Ko disebut konstanta kelarutan termodinamika Kurung kurawal menandakan aktivitas Aktivitas padatan murni secara definitif adalah satu sehingga K C 12 H 22 O 11 a q displaystyle K ominus left mathrm C 12 H 22 O 11 aq right nbsp Aktivitas zat A dalam larutan dapat dinyatakan sebagai produk dari konsentrasi A dan koefisien aktivitas g Ketika Ko is dibagi dengan g didapat konstanta kelarutan Ks K s C 12 H 22 O 11 a q displaystyle K mathrm s left mathrm C 12 H 22 O 11 aq right nbsp Hal ini ekuivalen dengan definisi keadaan standar sebagai larutan jenuh sehingga koefisien aktivitas sama dengan satu Konstanta kelarutan hanya benar benar konstan jika koefisien aktivitas tidak terpengaruh dengan adanya zat terlarut lain yang mungkin ada Satuan konstanta kelarutan sama dengan satuan konsentrasi zat terlarut Untuk sukrosa K 1 971 mol dm 3 pada 25 C Ini menunjukkan bahwa kelarutan sukrosa pada 25 C mendekati 2 mol dm 3 540 g L Sukrosa tidak biasa dalam bentuk itu karena tidak mudah membentuk larutan superjenuh pada konsentrasi yang lebih tinggi sama seperti kebanyakan karbohidrat lainnya Pelarutan disertai disosiasi suntingSenyawa ionik umumnya terdisosiasi menjadi ion ion penyusunnya ketika larut alam air Misalnya kalsium sulfat CaSO 4 s Ca aq 2 SO 4 aq 2 displaystyle ce CaSO4 s lt gt Ca aq 2 SO4 aq 2 nbsp Untuk contoh di atas pernyataan kesetimbangan adalah K Ca aq 2 SO 4 aq 2 CaSO 4 s Ca aq 2 SO 4 aq 2 displaystyle K ominus frac left ce Ca 2 aq right left ce SO4 2 aq right left ce CaSO4 s right left ce Ca 2 aq right left ce SO4 2 aq right nbsp dengan Ko adalah tetapan kesetimbangan termodinamika dan kurung kurawal menandakan aktivitas Aktivitas padatan murni secara definitif sama dengan satu Ketika kelarutan garam sangat rendah koefisien aktivitas ion ionnya dalam larutan mendekati satu Dengan aktivitasnya sehingga sama dengan satu maka persamaan di atas dapat disederhanakan menjadi pernyataan kelarutan K sp Ca aq 2 SO 4 aq 2 displaystyle K ce sp left ce Ca 2 aq right left ce SO4 2 aq right nbsp Produk kelarutan untuk senyawa biner yang umum ApBq dinyatakan sebagai A p B q p A q q B p displaystyle ce A p B q lt gt p A q q B p nbsp Ksp A p B q muatan diabaikan untuk menyederhanakan notasi Ketika produk terdisosiasi konsentrasi B sama dengan q p kali konsentrasi A B q p A displaystyle B frac q p A nbsp Sehingga K sp A p q p q A q q p q A p q displaystyle K ce sp ce A p left frac q p right q ce A q left frac q p right q ce A p q nbsp A K sp q p q p q displaystyle ce A sqrt p q K ce sp over left frac q p right q nbsp Kelarutan S adalah 1 p A Satu dapat mewakili 1 p dan dimasukkan di bawah akar untuk memperoleh S A p B q K sp q p q p p q p q K sp q q p p p q displaystyle S ce A over p ce B over q sqrt p q K ce sp over left frac q p right q p p q sqrt p q K ce sp over q q p p nbsp Garam p q Kelarutan S AgCl 1 1 Ksp Na2SO4Ca OH 2 21 12 K sp 4 3 displaystyle sqrt 3 K ce sp over 4 nbsp CaSO4 2 2 K sp 16 4 displaystyle sqrt 4 K ce sp over 16 nbsp Na3PO4FeCl3 13 31 K sp 27 4 displaystyle sqrt 4 K ce sp over 27 nbsp Al2 SO4 3Ca3 PO4 2 23 32 K sp 108 5 displaystyle sqrt 5 K ce sp over 108 nbsp FePO4 3 3 K sp 729 6 displaystyle sqrt 6 K ce sp over 729 nbsp Produk kelarutan sering kali dinyatakan dalam bentuk logaritma Oleh karena itu untuk kalsium sulfat Ksp 4 93 10 5 log Ksp 4 32 Semakin kecil nilainya atau semakin negatif nilai lognya kelarutannya semakin rendah Beberapa garam tidak terdisosiasi sempurna dalam larutan Misalnya MgSO4 ditemukan oleh Manfred Eigen terdapat dalam air laut sebagai kompleks sferis inner dan asosiasi ion Kelarutan garam semacam ini dihitung menggunakan metode yang dijelaskan dalam pelarutan dengan reaksi Hidroksida sunting Untuk hidroksida produk kelarutan sering kali diberikan dalam bentuk yang sudah diganti K sp menggunakan konsentrasi ion hidrogen menggantikan konsentrasi ion hidroksida Kedua konsentrasi ini berhubungan dengan tetapan autoionisasi air Kw K w H O H displaystyle K w H OH nbsp Misalnya Ca OH 2 Ca 2 2 OH displaystyle ce Ca OH 2 lt gt Ca 2 2OH nbsp K s p C a 2 O H 2 C a 2 K w 2 H 2 displaystyle K sp Ca 2 OH 2 Ca 2 K w 2 H 2 nbsp K s p K s p K w 2 C a 2 H 2 displaystyle K sp frac K sp K w 2 Ca 2 H 2 nbsp log Ksp untuk Ca OH 2 sekitar 5 pada temperatur ambien log K sp 5 2 14 23 kira kira Efek ion sejenis sunting Efek ion sejenis adalah efek penurunan kelarutan suatu garam akibat hadirnya suatu garam yang memiliki ion sejenis Misalnya kelarutan perak klorida AgCl menurun jika natrium klorida suatu sumber ion klorida ditambahkan ke dalam suspensi AgCl dalam air 6 AgCl s Ag aq Cl aq K sp Ag Cl displaystyle ce AgCl s lt gt Ag aq Cl aq K sp Ag Cl nbsp Kelarutan S tanpa kehadiran ion sejenis dapat dihitung sebagai berikut Konsentrasi Ag dan Cl adalah sama karena satu mol AgCl terdisosiasi menjadi satu mol Ag dan satu mol Cl Misalkan konsentrasi Ag aq dinyatakan sebagai x K s p x 2 S x K s p displaystyle K sp x 2 S x sqrt K sp nbsp Ksp AgCl sama dengan 1 77 10 10 mol2 dm 6 pada 25 C sehingga kelarutannya adalah 1 33 10 5 mol dm 3 Sekarang anggap bahwa terdapat juga natrium klorida dengan konsentrasi 0 01 mol dm 3 Kelarutannya dengan mengabaikan semua efek ion natrium yang mungkin terjadi dihitung sebagai K s p x 0 01 x displaystyle K sp x 0 01 x nbsp Ini adalah persamaan kuadrat x yang juga sama dengan kelarutan x 2 0 01 x K s p 0 displaystyle x 2 0 01x K sp 0 nbsp Dalam hal perak klorida x2 jauh lebih kecil daripada 0 01x sehingga dapat diabaikan Oleh karena itu S x K s p 0 01 1 77 10 8 m o l d m 3 displaystyle S x frac K sp 0 01 1 77 times 10 8 cdot mol cdot dm 3 nbsp sangat berkurang jauh Dalam analisis gravimetri untuk perak berkurangnya kelarutan karena efek ion sejenis digunakan untuk memastikan pengendapan sempurna AgCl Pelarutan dengan reaksi sunting nbsp Ketika larutan amonia pekat ditambahkan ke dalam suspensi perak klorida akan terjadi pelarutan karena pembentukan kompleks Ag Reaksi khas dengan pelarutan melibatkan basa lemah B yang dilarutkan dalam larutan bersuasana asam B s H aq BH aq displaystyle ce B s H aq lt gt BH aq nbsp Reaksi ini sangat penting untuk produk produk farmasi 7 Pelarutan asam lemah dalam media alkalis juga sama pentingnya H n A s OH aq H n 1 A aq H 2 O displaystyle ce H n A s OH aq lt gt H n 1 A aq H2O nbsp Molekul yang tak berubah biasanya memiliki kelarutan yang lebih rendah daripada bentuk ioniknya sehingga kelarutan bergantung pada pH dan tetapan disosiasi asam zat terlarutnya Istilah kelarutan intrinsik digunakan untuk menjelaskan kelarutan bentuk tak terionisasi tanpa adanya asam atau basa Pelindian garam aluminium dari batuan dan tanah oleh hujan asam adalah contoh lain pelarutan disertai reaksi alumino silikat adalah basa yang bereaksi dengan asam membentuk spesies yang mudah larut seperti Al3 aq Pembentukan bahan kimia kompleks juga mengubah kelarutan Contoh yang terkenal adalah penambahan larutan amonia pekat ke dalam suspensi perak klorida yang proses pelarutannya akibat pembentukan kompleks amina AgCl s 2 NH3 aq nbsp Ag NH3 2 aq Cl aq Contoh lain melibatkan penambahan pelembut air untuk mencuci serbuk untuk mencegah pengendapan garam ion magnesium dan kalsium yang terdapat dalam air sadah dengan membentuk kompleks dengan magnesium dan kalsium Perhitungan kelarutan dalam kasus ini memerlukan dua atau lebih persamaan simultan yang harus diperhatikan Misalnya Kesetimbangan kelarutan intrinsik B s B aq displaystyle ce B s lt gt B aq nbsp K s B a q displaystyle K s B aq nbsp Kesetimbangan asam basa B aq H aq BH aq displaystyle ce B aq H aq lt gt BH aq nbsp K a B a q H a q B H a q displaystyle K a frac B aq H aq BH aq nbsp Penentuan eksperimental suntingPenentuan kelarutan penuh dengan kesulitan 1 Kesulitan pertama dan utama adalah menetapkan bahwa sistem berada dalam kesetimbangan pada temperatur yang dipilih Hal ini karena baik pengendapan maupun pelarutan dapat berjalan teramat lambat Jika proses berjalan teramat lambat penguapan pelarut dapat menjadi isu Kelewatjenuhan mungkin terjadi Bekerja dengan zat yang sangat tidak larut konsentrasi dalam larutan sangatlah rendah dan sulit untuk ditentukan Metode metode yang digunakan tersebar luas di antara dua kategori statis dan dinamis Metode statis sunting Dalam metode statis suatu campuran dibuat dalam keadaan kesetimbangan dan konsentrasi spesies nya dalam fase larutan ditentukan melalui analisis kimia Hal ini biasanya memerlukan pemisahan fase padat dari larutannya Untuk melakukan hal ini kesetimbangan dan pemisahan harus dilakukan dalam ruangan dengan suhu terkendali 8 Konsentrasi yang sangat rendah dapat diukur jika jejak radioaktif terkumpul dalam fase padat Variasi metode statis adalah dengan menambahkan larutan zat dalam pelarut tak berair misalnya dimetil sulfoksida ke dalam campuran dapar berair 9 Pengendapan cepat dapat terjadi menghasilkan campuran keruh Kelarutan diukur untuk campuran semacam ini dikenal sebagai kelarutan kinetik Kekeruhan terjadi akibat partikel endapan sangat halus menghasilkan hamburan Tyndall Kenyataannya partikel partikel tersebut sangat halus sehingga efek ukuran partikel menjadi berperan dan kelarutan kinetik sering kali lebih besar daripada kelarutan kesetimbangan Seiring berjalannya waktu kekeruhan akan menghilang karena pertumbuhan ukuran kristal dan pada gilirannya kesetimbangan tercapai dalam proses yang dikenal sebagai pemeraman endapan bahasa Inggris aging of precipitate 10 Metode dinamis sunting Nilai kelarutan asam basa dan amfoter organik dalam bidang farmasi dapat diperoleh melalui proses yang disebut Mengejar kelarutan kesetimbangan Chasing equilibrium solubility 11 Dalam prosedur ini sejumlah zat dilarutkan terlebih dahulu pada pH di mana ia berada dalam bentuk ionnya dan kemudian diendapkan dalam bentuk netral tak terionisasi dengan mengubah pH lingkungannya Selanjutnya laju perubahan pH akibat pengendapan atau pelarutan dimonitor dan titran asam kuat atau basa kuat ditambahkan untuk mengatur pH untuk menentukan kondisi kesetimbangan jika kedua laju adalah sama Keuntungan metode ini adalah relatif cepat karena jumlah endapat yang terbentuk sangat kecil Namun kinerja metode ini dapat dipengaruhi oleh pembentukan larutan lewat jenuh Lihat juga suntingTabel kelarutan Tabel kelarutan sebagian besar garam anorganik pada temperatur antara 0 dan 100 C Kelarutan molar Jumlah mol zat terlarut yang dapat dilarutkan per liter larutan sebelum larutan menjadi jenuh Model pelarutReferensi sunting a b Hefter G T Tomkins R P T ed 2003 The Experimental Determination of Solubilities Wiley Blackwell ISBN 0 471 49708 8 Mendham J Denney R C Barnes J D Thomas M J K Denney R C Thomas M J K 2000 Vogel s Quantitative Chemical Analysis edisi ke 6th New York Prentice Hall ISBN 0 582 22628 7 Pemeliharaan CS1 Banyak nama authors list link Section 2 14 Pauling Linus 1970 General Chemistry Dover Publishing hlm 450 Linke W F Seidell A 1965 Solubilities of Inorganic and Metal Organic Compounds edisi ke 4th Van Nostrand ISBN 0 8412 0097 1 Gutman E M 1994 Mechanochemistry of Solid Surfaces World Scientific Publishing Housecroft C E Sharpe A G 2008 Inorganic Chemistry edisi ke 3rd Prentice Hall ISBN 978 0131755536 Section 6 10 Payghan Santosh 2008 Potential Of Solubility In Drug Discovery And development Pharminfo net Diarsipkan dari versi asli tanggal March 30 2010 Diakses tanggal 5 July 2010 Rossotti F J C Rossotti H 1961 Chapter 9 Solubility The Determination of Stability Constants McGraw Hill Aqueous solubility measurement kinetic vs thermodynamic methods Diarsipkan July 11 2009 di Wayback Machine Mendham J Denney R C Barnes J D Thomas M J K Denney R C Thomas M J K 2000 Vogel s Quantitative Chemical Analysis edisi ke 6th New York Prentice Hall ISBN 0 582 22628 7 Pemeliharaan CS1 Banyak nama authors list link Chapter 11 Gravimetric analysis Stuart M Box K 2005 Chasing Equilibrium Measuring the Intrinsic Solubility of Weak Acids and Bases Anal Chem 77 4 983 990 doi 10 1021 ac048767n PMID 15858976 Pranala luar suntingHousecroft C E Sharpe A G 2008 Inorganic Chemistry edisi ke 3rd Prentice Hall ISBN 978 0131755536 Section 6 9 Solubilities of ionic salts Includes a discussion of the thermodynamics of dissolution IUPAC NIST solubility database Solubility products of simple inorganic compounds Diarsipkan 2006 05 25 di Wayback Machine Solubility challenge Memprediksi kelarutan dari database 100 molekul Database ini sebagian besar merupakan senyawa farmasi tersedia di One hundred molecules with solubilities Text file tab separated Sejumlah aplikasi komputer tersedia untuk melakukan perhitungan Antara lain CHEMEQL Program komputer komprehensif untuk perhitungan konsentrasi kesetimbangan termodinamika spesies dalam sistem homogen dan heterogen Kebanyakan untuk aplikasi geokimia JESS Seluruh jenis kesetimbangan kimia dapat dimodelkan termasuk protonasi pembentukan kompleks redoks kelarutan dan interaksi adsorpsi Termasuk di dalamnya database ekstensif MINEQL Sistem pemodelan kesetimbangan kimia Menangani skenario pH redoks kelarutan dan penjerapan yang luas PHREEQC Perangkat lunak USGS yang dirancang untuk melakukan beragam perhitungan geokimia berair pada temperatur rendah termasuk transport reaktif dalam satu dimensi MINTEQ Suatu model kesetimbangan kimia untuk perhitungan spesiasi logam kesetimbangan kelarutan dll untuk air alami WinSGW Program komputer SOLGASWATER versi Windows nbsp Portal Kimia Diperoleh dari https id wikipedia org w index php title Kesetimbangan kelarutan amp oldid 22869806