www.wikidata.id-id.nina.az
Sel surya atau sel fotovoltaik adalah sebuah alat semikonduktor yang terdiri dari sebuah wilayah besar dioda sambungan p n di mana dengan adanya cahaya matahari dapat menciptakan energi listrik yang berguna Pengubahan bentuk energi ini disebut efek fotovoltaik Bidang riset berhubungan dengan sel surya dikenal sebagai fotovoltaik Taksi tenaga surya sedang dipamerkan oleh pembuatnya pada KTT Perubahan Iklim di Nusa Dua BaliSel surya memiliki banyak aplikasi Mereka terutama cocok untuk digunakan bila tenaga listrik dari grid tidak tersedia seperti di wilayah terpencil satelit pengorbit bumi kalkulator genggam pompa air dll Sel surya dalam bentuk modul atau panel surya dapat dipasang di atap gedung di mana mereka berhubungan dengan inverter ke grid listrik dalam sebuah pengaturan net metering Banyak bahan semikonduktor yang dapat dipakai untuk membuat sel surya diantaranya silikon titanium oksida germanium dll Daftar isi 1 Aplikasi 1 1 Sel panel modul dan sistem 1 2 Aplikasi di Kendaraan 2 Sejarah 2 1 Aplikasi luar angkasa 2 2 Penurunan biaya 2 3 Penelitian dan Produksi Industri 3 Pengurangan biaya dan pertumbuhan eksponensial 4 Material 4 1 Silikon kristal 4 1 1 Silikon monokristalin 4 1 2 Pengembangan silikon epitaksial 4 1 3 Silikon polikristalin 4 1 4 Silikon pita 4 1 5 Silikon mono seperti multi MLM 4 2 Film tipis 4 2 1 Kadmium telurida 4 2 2 Tembaga indium galium selenida 4 2 3 Film tipis silikon 4 2 4 Film tipis galium arsenida 5 Manufaktur 6 Lihat pula 7 Referensi 7 1 Bibliografi 8 Pranala luar 8 1 Yield data 8 2 Teori 8 3 Swakriya 8 4 Indeks 8 5 Newsgroup 8 6 PatenAplikasi SuntingRakitan sel surya digunakan untuk membuat modul surya yang menghasilkan daya listrik dari sinar matahari yang dibedakan dari modul termal surya atau panel air panas surya Jajaran surya menghasilkan tenaga surya menggunakan energi matahari Sel panel modul dan sistem Sunting Dari sel surya ke sistem PV Diagram komponen yang mungkin dari sistem fotovoltaikBeberapa sel surya dalam kelompok terpadu semuanya berorientasi dalam satu bidang membentuk panel atau modul fotovoltaik surya Modul fotovoltaik sering kali memiliki selembar kaca di sisi yang menghadap matahari memungkinkan cahaya untuk lewat dan melindungi wafer semikonduktor Sel surya biasanya dihubungkan secara seri dan paralel atau seri dalam modul menciptakan tegangan tambahan Menghubungkan sel secara paralel menghasilkan arus yang lebih tinggi Namun masalah seperti efek bayangan dapat mematikan string paralel sejumlah sel yang terhubung secara seri yang lebih lemah kurang menyala menyebabkan kehilangan daya yang substansial dan kemungkinan kerusakan karena bias balik diterapkan pada sel sel yang tertutupi oleh sel lainnya yang disoroti cahaya String sel seri biasanya ditangani secara independen dan tidak terhubung secara paralel meskipun hingga tahun 2014 kotak daya individu telah sering dipasok untuk setiap modul dan terhubung secara paralel Meskipun modul dapat dihubungkan untuk membuat jajaran surya dengan tegangan DC puncak yang diinginkan dan kapasitas arus pemuatan MPPT independen lebih disukai pelacak titik daya maksimum Jika tidak dioda shunt dapat mengurangi hilangnya daya bayangan dalam jajaran surya menggunakan sel yang terhubung secara seri paralel Harga sistem PV tipikal pada 2013 di negara negara tertentu W USD W Australia Tiongkok Prancis Jerman Italia Jepang Kerajaan Inggris Amerika Serikat Hunian 1 8 1 5 4 1 2 4 2 8 4 2 2 8 4 9 Komersial 1 7 1 4 2 7 1 8 1 9 3 6 2 4 4 5 Skala utilitas 2 0 1 4 2 2 1 4 1 5 2 9 1 9 3 3Sumber IEA Roadmap Teknologi Laporan Energi Fotovoltaik Solar edisi 2014 1 15 Catatan DOE Tren Penentuan Harga Sistem Fotovoltaik melaporkan harga yang lebih rendah untuk AS 2 Aplikasi di Kendaraan Sunting Mobil Sunraycer yang dikembangkan oleh GM General Motors Penggunaan sel surya sebagai sumber energi alternatif dalam kendaraan semakin berkembang Kendaraan listrik yang menggunakan energi surya dan atau sinar matahari disebut mobil surya Mobil ini menggunakan panel surya untuk mengubah cahaya menjadi energi listrik yang disimpan dalam baterai Beberapa faktor seperti suhu sifat material kondisi cuaca sinar matahari dan lainnya mempengaruhi daya yang dihasilkan oleh sel surya 3 Penggunaan sel surya dalam kendaraan mulai muncul sekitar pertengahan abad ke 20 Untuk meningkatkan publisitas dan kesadaran tentang transportasi berenergi surya pada tahun 1987 Hans Tholstrup mengadakan World Solar Challenge sebuah perlombaan sejauh 3000 km melintasi belantara Australia yang diikuti oleh peserta dari industri dan universitas terkemuka di seluruh dunia 4 General Motors berhasil memenangkan acara tersebut dengan mobil mereka Sunraycer yang mencapai kecepatan lebih dari 40 mph dan memiliki keunggulan yang signifikan 4 Sebenarnya mobil tenaga surya adalah salah satu jenis kendaraan energi alternatif tertua 5 Sejarah SuntingEfek fotovoltaik didemonstrasikan pertama kali oleh fisikawan Prancis Edmond Becquerel Pada tahun 1839 pada usia 19 ia membangun sel fotovoltaik pertama di dunia di laboratorium ayahnya Willoughby Smith pertama kali menggambarkan Effect of Light on Selenium during the passage of an Electric Current Pengaruh Cahaya pada Selenium selama perjalanan Arus Listrik dalam Nature edisi 20 Februari 1873 Pada tahun 1883 Charles Fritts membangun sel fotovoltaik padat pertama dengan melapisi selenium semikonduktor dengan lapisan tipis emas untuk membentuk persimpangan perangkat ini hanya memiliki efisiensi sekitar 1 Capaian lain termasuk 1888 Fisikawan Rusia Aleksandr Stoletov membangun sel pertama berdasarkan efek fotolistrik luar yang ditemukan oleh Heinrich Hertz pada tahun 1887 6 1905 Albert Einstein mengusulkan teori kuantum cahaya yang baru dan menjelaskan efek fotolistrik dalam makalah penting di mana ia menerima Hadiah Nobel dalam Fisika pada tahun 1921 7 1941 Vadim Lashkaryov menemukan pertemuan p n pada sel proto Cu2O dan Ag2S 8 1946 Russell Ohl mematenkan sel surya semikonduktor junction modern 9 sambil mengerjakan serangkaian kemajuan yang akan mengarah pada transistor 1954 sel fotovoltaik praktis pertama didemonstrasikan secara publik di Bell Laboratories 10 Para penemu adalah Calvin Souther Fuller Daryl Chapin dan Gerald Pearson 11 1958 sel surya menjadi terkenal dengan penggabungannya ke satelit Vanguard I NASA menggunakan sel surya di pesawat ruang angkasa sejak awal Sebagai Contoh Explorer 6 diluncurkan pada tahun 1959 memiliki empat jajaran yang akan terbuka begitu mencapai orbit jajaran ini menyediakan daya untuk berbulan bulan di luar angkasa Aplikasi luar angkasa Sunting Sel surya pertama kali digunakan dalam aplikasi yang menonjol ketika mereka diusulkan dan diterbangkan pada satelit Vanguard pada tahun 1958 sebagai sumber daya alternatif ke sumber daya baterai utama Dengan menambahkan sel ke bagian satelit waktu misi dapat diperpanjang tanpa perubahan besar pada pesawat ruang angkasa atau sistem dayanya Pada tahun 1959 Amerika Serikat meluncurkan Explorer 6 menampilkan jajaran surya besar berbentuk sayap yang menjadi fitur umum pada satelit tersebut Jajaran ini terdiri dari 9600 sel surya Hoffman Pada 1960 an sel surya adalah sumber daya utama untuk sebagian besar satelit yang mengorbit Bumi dan sejumlah wahana antariksa di tata surya karena menawarkan rasio daya terhadap berat yang terbaik Namun keberhasilan ini dimungkinkan karena dalam aplikasi luar angkasa biaya sistem daya bisa begitu tinggi karena pengguna ruang memiliki sedikit opsi daya lain dan kesediaan membayar untuk sel surya terbaik Pasar tenaga luar angkasa mendorong pengembangan efisiensi yang lebih tinggi dalam sel surya hingga program Yayasan Sains Nasional Penelitian yang Diterapkan untuk Kebutuhan Nasional mulai mendorong pengembangan sel surya untuk aplikasi terestrial Pada awal 1990 an teknologi yang digunakan untuk sel surya luar angkasa membelok dari teknologi silikon yang digunakan untuk panel terestrial dengan aplikasi pesawat ruang angkasa bergeser ke bahan semikonduktor III V berbasis galium arsenida yang kemudian berkembang menjadi sel fotovoltaik multipertemuan III V modern yang digunakan di pesawat luar angkasa Penurunan biaya Sunting Pemutakhiran terjadi secara bertahap selama 1960 an Ini juga merupakan alasan bahwa biaya sel surya begitu tinggi karena pengguna bersedia membayar untuk sel terbaik tanpa meninggalkan alasan untuk berinvestasi dalam solusi yang lebih murah dan kurang efisien Harga sebagian besar ditentukan oleh industri semikonduktor perpindahan tren menuju sirkuit terpadu pada 1960 an menyebabkan ketersediaan boule yang lebih besar dengan harga relatif lebih rendah Ketika harganya turun harga sel yang dihasilkan juga Efek ini menurunkan biaya sel pada tahun 1971 menjadi sekitar 100 per watt 12 Pada akhir 1969 Elliot Berman bergabung dengan gugus tugas Exxon yang sedang mencari proyek 30 tahun di masa depan dan pada April 1973 ia mendirikan Solar Power Corporation anak perusahaan yang sepenuhnya dimiliki Exxon pada waktu itu 13 14 15 Kelompok ini menyimpulkan bahwa daya listrik akan jauh lebih mahal pada tahun 2000 dan merasa bahwa kenaikan harga ini akan membuat sumber energi alternatif lebih menarik Dia melakukan studi pasar dan menyimpulkan bahwa harga per watt sekitar 20 watt akan menciptakan permintaan yang signifikan 13 Tim menghilangkan langkah langkah memoles wafer dan melapisinya dengan lapisan anti reflektif dengan mengandalkan permukaan wafer gergajian kasar Tim juga mengganti bahan bahan mahal dan kabel tangan yang digunakan dalam aplikasi luar angkasa dengan papan sirkuit cetak di bagian belakang plastik akrilik di bagian depan dan lem silikon di antara keduanya pot sel 16 Sel surya dapat dibuat menggunakan bahan buangan dari pasar elektronik Pada tahun 1973 mereka mengumumkan produk dan SPC meyakinkan Tideland Signal untuk menggunakan panelnya untuk memberi daya pada pelampung navigasi awalnya untuk US Coast Guard 14 Penelitian dan Produksi Industri Sunting Penelitian mengenai energi surya untuk aplikasi di daratan menjadi penting melalui Divisi Penelitian dan Pengembangan Energi Surya Lanjutan dari National Science Foundation NSF Amerika Serikat dalam program Penelitian yang Diterapkan untuk Kebutuhan Nasional dari tahun 1969 hingga 1977 17 yang mendanai penelitian untuk mengembangkan energi surya dalam sistem listrik di daratan Pada tahun 1973 dalam konferensi Cherry Hill Conference ditetapkan tujuan teknologi yang harus dicapai dan merencanakan proyek ambisius untuk mencapainya sehingga memulai program penelitian terapan yang berlangsung selama beberapa dekade 18 Program ini kemudian dikelola oleh Energy Research and Development Administration ERDA 19 yang kemudian digabungkan ke dalam Departemen Energi Amerika Serikat Setelah krisis minyak 1973 perusahaan minyak menggunakan keuntungan yang lebih tinggi untuk memulai atau membeli perusahaan energi surya sehingga menjadi produsen terbesar selama beberapa dekade Perusahaan perusahaan seperti Exxon ARCO Shell Amoco kemudian dibeli oleh BP dan Mobil memiliki divisi energi surya yang besar pada tahun 1970 an dan 1980 an Perusahaan perusahaan teknologi juga turut berpartisipasi antara lain General Electric Motorola IBM Tyco dan RCA 20 21 Pengurangan biaya dan pertumbuhan eksponensial SuntingArtikel utama Pertumbuhan fotovoltaik Volume energi sel surya Si dan minyak yang dikumpulkan oleh manusia per dolar dan intensitas karbon dari beberapa teknologi pembangkit listrik utama 22 Pada tahun 1970 biaya untuk solar panel adalah 96 per watt menyesuaikan inflasi Dengan peningkatan proses produksi dan jumlah produksi yang sangat besar dapat menurunkan harganya menjadi 99 menjadi 68 per watt pada 2016 menurut data dari Bloomberg New Energy Finance 23 Berdasarkan hukum Swanson seperti halnya dengan Hukum Moore menyatakan bahwa harga sel surya turun 20 untuk setiap penggandaan kapasitas industri Hal ini ditampilkan dalam sebuah artikel di surat kabar mingguan Inggris The Economist pada akhir 2012 24 Pemutakhiran teknologi pemrosesan lebih lanjut mengurangi biaya produksi hingga di bawah 1 per watt dengan biaya grosir jauh di bawah 2 Sistem penyimpanan sel surya merupakan komponen termahal daripada biaya panel surya itu sendiri Jajaran komersial besar dapat dibangun pada 2010 di bawah 3 40 per watt sepenuhnya beroperasi 25 26 Ketika industri semikonduktor berkembang sehingga dapat membuat boule dengan ukuran semakin besar peralatan lama menjadi murah Ukuran sel surya tumbuh ketika peralatan menjadi tersedia di pasar surplus Panel asli ARCO Solar menggunakan sel dengan diameter 2 hingga 4 inci 50 hingga 100 mm Panel pada 1990 an dan awal 2000 an umumnya digunakan wafer 125 mm Dan sejak 2008 hampir semua panel baru menggunakan sel 156 mm Penyebaran dari televisi layar datar pada akhir 1990 an dan awal 2000 an menyebabkan tersedianya lembaran kaca besar berkualitas tinggi untuk menutupi panel Selama tahun 1990 an sel polisilikon poli menjadi semakin populer Sel sel ini menawarkan efisiensi yang lebih rendah dibandingkan dengan monosilikon mono namun dengan pertumbungan produksi dengan jumlah besar sehingga dapat mengurangi biaya Pada pertengahan 2000 an sel poli menjadi dominan di pasar panel berbiaya rendah tetapi baru baru ini mono kembali digunakan secara luas PV surya tumbuh tercepat di Asia dengan Tiongkok dan Jepang saat ini menyumbang setengah dari penyebaran di seluruh dunia 27 Kapasitas PV terpasang global mencapai setidaknya 301 gigawatt pada 2016 dan tumbuh untuk memasok 1 3 daya global pada 2016 28 Sejak 2004 dengan biaya yang sama energi yang dikasilkan oleh sel surya lebih tinggi dibandingkan oleh energi berbahan bakar minyak 22 Diperkirakan bahwa listrik dari PV akan bersaing dengan biaya jaringan listrik besar di seluruh Eropa dan waktu pengembalian energi dari modul silikon kristal dapat dikurangi hingga di bawah 0 5 tahun pada tahun 2020 29 Penurunan biaya dianggap sebagai salah satu faktor terbesar dalam pesatnya pertumbuhan energi terbarukan dengan turunnya biaya listrik fotovoltaik surya sebesar 85 antara tahun 2010 hingga 2021 30 Pada tahun 2019 sel surya menyumbang 3 dari pembangkit listrik dunia 31 Material SuntingSel surya biasanya dinamai dengan bahan semikonduktor pembuatnya Bahan bahan ini harus memiliki karakteristik tertentu untuk menyerap sinar matahari Beberapa sel dirancang untuk menangani sinar matahari yang mencapai permukaan bumi sementara yang lain dioptimalkan untuk digunakan di luar angkasa Sel surya dapat dibuat hanya dari satu lapisan tunggal bahan penyerap cahaya pertemuan tunggal atau menggunakan beberapa konfigurasi fisik multipertemuan untuk memanfaatkan berbagai mekanisme penyerapan dan pemisahan muatan Sel surya dapat diklasifikasikan menjadi sel generasi pertama kedua dan ketiga Sel generasi pertama juga disebut sel konvensional tradisional atau berbasis wafer terbuat dari silikon kristal teknologi PV yang dominan secara komersial yang mencakup bahan bahan seperti polisilikon dan silikon monokristalin Sel generasi kedua adalah sel surya film tipis yang meliputi silikon amorf CdTe dan sel CIGS dan secara komersial signifikan dalam skala pembangkit listrik fotovoltaik membangun fotovoltaik terintegrasi atau dalam sistem daya kecil yang berdiri sendiri Generasi ketiga dari sel surya mencakup sejumlah teknologi film tipis yang sering digambarkan sebagai fotovoltaik pegari emerging kebanyakan dari teknologi generasi ini belum diterapkan secara komersial dan masih dalam tahap penelitian atau pengembangan Banyak yang menggunakan bahan organik sering kali senyawa organologam serta zat anorganik Terlepas dari kenyataan bahwa efisiensinya rendah dan stabilitas bahan penyerap sering kali terlalu rendah untuk aplikasi komersial ada banyak penelitian yang diinvestasikan ke dalam teknologi ini karena mereka menjanjikan untuk mencapai tujuan menghasilkan biaya rendah efisiensi tinggi sel surya Silikon kristal Sunting Sejauh ini bahan curah paling umum untuk sel surya adalah silikon kristal c Si juga dikenal sebagai silikon kualitas sel surya Kumpulan silikon dipisahkan menjadi beberapa kategori sesuai dengan kristalinitas dan ukuran kristal dalam ingot pita atau wafer yang dihasilkan Sel sel ini seluruhnya didasarkan pada konsep pertemuan p n Sel surya yang terbuat dari c Si terbuat dari wafer dengan tebal antara 160 dan 240 mikrometer Silikon monokristalin Sunting Sel surya silikon monokristalin mono Si lebih efisien dan lebih mahal daripada kebanyakan jenis sel lainnya Sudut sudut sel terlihat terpotong seperti segi delapan karena bahan wafer dipotong dari ingot silinder yang biasanya dibuat melalui proses Czochralski Panel surya menggunakan sel mono Si menampilkan pola khas berlian putih kecil Pengembangan silikon epitaksial Sunting Wafer epitaksial silikon kristalin dapat ditumbuhkan pada wafer benih silikon monokristalin oleh deposisi uap kimia CVD dan kemudian terlepas sebagai wafer yang menopang diri sendiri dengan ketebalan standar misalnya 250 mm yang dapat dimanipulasi dengan tangan dan secara langsung diganti dengan sel wafer yang dipotong dari ingot silikon monokristalin Sel surya yang dibuat dengan teknik tanpa kerf ini dapat memiliki efisiensi mendekati sel sel wafer cut tetapi dengan biaya yang jauh lebih rendah jika CVD dapat dilakukan pada tekanan atmosfer dalam proses inline dengan throughput yang tinggi 32 33 Permukaan wafer epitaksial mungkin bertekstur untuk meningkatkan penyerapan cahaya 34 35 Pada Juni 2015 dilaporkan bahwa sel surya heterojunction yang ditumbuhkan secara epitaksial pada wafer silikon tipe n monokristalin telah mencapai efisiensi 22 5 dari total luas sel 243 4 cm2 displaystyle 2 36 Silikon polikristalin Sunting Sel silikon polikristalin atau silikon multikristalin multi Si dibuat dari ingot kotak blok besar silikon cair yang didinginkan dan dipadatkan dengan hati hati Sel ini terdiri dari kristal kristal kecil yang memberikan material efek serpihan logam yang khas Sel polisilikon adalah jenis yang paling umum digunakan dalam fotovoltaik dan lebih murah tetapi juga kurang efisien dibandingkan dengan yang dibuat dari silikon monokristalin Silikon pita Sunting Silikon pita adalah jenis silikon polikristalin dibentuk dengan menarik film tipis rata dari silikon cair dan menghasilkan struktur polikristalin Sel sel ini lebih murah daripada multi Si karena pengurangan besar dalam limbah silikon karena pendekatan ini tidak memerlukan penggergajian dari ingot 37 Namun sel ini juga kurang efisien Silikon mono seperti multi MLM Sunting Bentuk sel ini dikembangkan pada 2000 an dan diperkenalkan secara komersial sekitar 2009 Juga disebut cor mono desain ini menggunakan ruang pencetakan polikristalin dengan biji kecil material monokristalin Hasilnya adalah material seperti monokristalin yang dikelilingi polikristalin di permukaan luarnya Ketika diiris untuk diproses bagian dalam adalah sel seperti monokristalin efisiensi tinggi tetapi bentuknya persegi bukannya terpotong sedangkan tepi luarnya dalah polikristalin konvensional Metode produksi ini menghasilkan sel seperti monokristalin dengan harga mirip polikristalin 38 Film tipis Sunting Teknologi film tipis mengurangi jumlah bahan aktif dalam sel Sebagian besar desain menempatkan bahan aktif di antara dua panel kaca Karena panel surya silikon hanya menggunakan satu panel kaca panel film tipis kira kira dua kali lebih berat dari panel silikon kristal meskipun mereka memiliki dampak ekologis yang lebih kecil ditentukan dari analisis siklus nyala 39 40 Kadmium telurida Sunting Kadmium telurida adalah satu satunya bahan film tipis sejauh ini yang mampu menyaingi silikon kristal dalam hal biaya watt Namun kadmium sangat beracun dan persediaan telurium anion telurium terbatas Kadmium yang ada dalam sel akan beracun jika dilepaskan begitu saja Namun pelepasan tidak mungkin terjadi selama operasi normal sel dan tidak mungkin terjadi saat ada kebakaran di atap rumah 41 Satu meter persegi CdTe mengandung kira kira jumlah Cd yang sama dengan baterai nikel kadmium sel C tunggal dalam bentuk yang lebih stabil dan kurang terlarut 41 Tembaga indium galium selenida Sunting Tembaga indium galium selenida CIGS adalah bahan celah pita langsung Sel ini memiliki efisiensi tertinggi 20 di antara semua bahan film tipis yang signifikan dan tersedia secara komersial lihat sel surya CIGS Metode fabrikasi tradisional melibatkan proses vakum termasuk co evaporasi dan sputtering Perkembangan terbaru di IBM dan Nanosolar berupaya untuk menurunkan biaya dengan menggunakan proses solusi non vakum 42 Film tipis silikon Sunting Sel film tipis silikon terutama disimpan oleh deposisi uap kimia biasanya ditingkatkan plasma PE CVD dari gas silena dan gas hidrogen Tergantung pada parameter deposisi proses ini dapat menghasilkan silikon amorf a Si atau a Si H silikon protokristalin atau silikon nanokristalin nc Si atau nc Si H juga disebut silikon mikrokristalin 43 Silikon amorf adalah teknologi film tipis yang paling berkembang saat ini Sel surya silikon amorf a Si terbuat dari silikon nonkristal atau mikrokristalin Silikon amorf memiliki celah pita yang lebih tinggi 1 7 eV dari silikon kristalin c Si 1 1 eV yang berarti sel itu cenderung menyerap bagian dari spektrum matahari yang terlihat daripada bagian spektrum inframerah dengan kepadatan daya yang lebih tinggi Produksi sel surya film tipis Si menggunakan kaca sebagai substrat dan menyimpan lapisan silikon yang sangat tipis dengan deposisi uap kimia yang ditingkatkan plasma PECVD Silikon protokristalin dengan fraksi volume rendah silikon nanokristalin optimal untuk tegangan rangkaian terbuka tinggi 44 Nc Si memiliki celah pita yang hampir sama dengan c Si dan nc Si dan a Si secara menguntungkan dapat dikombinasikan dalam lapisan tipis menciptakan sel berlapis yang disebut sel tandem Sel atas berupa a Si menyerap cahaya tampak dan meninggalkan bagian spektrum inframerah untuk sel bawah yang berupa nc Si Film tipis galium arsenida Sunting Bahan semikonduktor galium arsenida GaAs juga digunakan untuk sel surya film tipis kristal tunggal Meskipun sel sel GaAs sangat mahal sel ini memegang rekor dunia dalam efisiensi untuk sel surya pertemuan tunggal pada 28 8 45 GaAs lebih umum digunakan dalam sel fotovoltaik multipertemuan untuk fotovoltaik terkonsentrasi CPV HCPV dan untuk panel surya pada wahana antariksa karena industri lebih menyukai efisiensi daripada biaya untuk tenaga surya berbasis antariksa Berdasarkan literatur sebelumnya dan beberapa analisis teoritis ada beberapa alasan mengapa GaAs memiliki efisiensi konversi daya yang tinggi Pertama celah pita GaAs adalah 1 43 ev yang hampir ideal untuk sel surya Kedua karena Gallium adalah produk sampingan dari peleburan logam lain sel sel GaAs relatif tidak sensitif terhadap panas dan dapat menjaga efisiensi tinggi ketika suhu cukup tinggi Ketiga GaAs memiliki berbagai pilihan desain Menggunakan GaAs sebagai lapisan aktif dalam sel surya para insinyur dapat memiliki banyak pilihan lapisan lain yang dapat menghasilkan elektron dan lubang lebih baik pada GaAs Manufaktur Sunting Kalkulator bertenaga surya generasi awalSel surya berbagi beberapa teknik pemrosesan dan pembuatan yang sama seperti perangkat semikonduktor lainnya Namun persyaratan ketat untuk kebersihan dan kontrol kualitas fabrikasi semikonduktor lebih longgar untuk sel surya sehingga menurunkan biaya produksinya Wafer silikon polikristalin dibuat dengan menggergaji ingot silikon cetak blok menjadi wafer dengan ketebalan 180 hingga 350 mikrometer Wafer biasanya berbentuk tipe p terdoping Difusi permukaan dopan tipe n dilakukan di sisi depan wafer Ini membentuk pertemuan p n beberapa ratus nanometer di bawah permukaan Lapisan antipantulan kemudian biasanya diterapkan untuk meningkatkan jumlah cahaya yang diterima sel surya Silikon nitrida secara bertahap menggantikan titanium dioksida sebagai bahan pilihan karena kualitas pasivasi permukaannya yang sangat baik Ini mencegah rekombinasi pembawa di permukaan sel Lapisan setebal beberapa ratus nanometer diaplikasikan menggunakan metode PECVD Beberapa sel surya memiliki permukaan depan bertekstur yang seperti lapisan antipantul meningkatkan jumlah cahaya yang mencapai wafer Permukaan semacam itu pertama kali diterapkan pada silikon kristal tunggal diikuti oleh silikon multikristalin kemudian Kontak logam area penuh dibuat di permukaan belakang dan kontak logam seperti kisi yang terbuat dari jari halus dan batang bus yang lebih besar dicetak dengan layar ke permukaan depan menggunakan pasta perak Ini adalah evolusi dari apa yang disebut proses basah untuk penerapan elektroda pertama kali dijelaskan dalam paten AS yang diajukan pada tahun 1981 oleh Bayer AG 46 Kontak belakang dibentuk dengan sablon pasta logam biasanya aluminium Biasanya kontak ini menutupi seluruh bagian belakang meskipun beberapa desain menggunakan pola kisi Pasta tersebut kemudian ditembakkan pada beberapa ratus derajat celcius untuk membentuk elektroda logam dalam kontak ohmik dengan silikon Beberapa perusahaan menggunakan langkah pelapisan listrik tambahan untuk meningkatkan efisiensi Setelah kontak logam dibuat sel surya dihubungkan dengan kabel pipih atau pita logam dan dirangkai menjadi modul atau panel surya Panel surya memiliki selembar kaca temper di bagian depan dan enkapsulasi polimer di bagian belakang Lihat pula Sunting Sebuah sel surya terbuat dari wafer silikon poly crystalline Gedung otonom Pengembangan energi masa depan Teknologi hijau Fotodioda Fotovore Energi terbaharui Tenaga surya Panel surya Garis waktu energi surya Sel suryaReferensi Sunting Technology Roadmap Solar Photovoltaic Energy PDF IEA 2014 Diarsipkan PDF dari versi asli tanggal 7 October 2014 Diakses tanggal 7 October 2014 Photovoltaic System Pricing Trends Historical Recent and Near Term Projections 2014 Edition PDF NREL 22 September 2014 hlm 4 Diarsipkan PDF dari versi asli tanggal 29 March 2015 Al Ezzi Athil S Ansari Mohamed Nainar M 2022 07 08 Photovoltaic Solar Cells A Review Applied System Innovation dalam bahasa Inggris 5 4 67 doi 10 3390 asi5040067 ISSN 2571 5577 a b Chaturvedi Abhinya Kushwaha Kirti Kashyap Parul Navani J P April June 2015 Solar Powered Vehicle International Journal of Electrical and Electronics Research 3 2 270 273 Connors John 21 23 Mei 2007 Tentang Kendaraan Tenaga Surya dan Manfaat Teknologi Ini Konferensi Internasional 2007 tentang Listrik Bersih Capri Italy hlm 700 705 doi 10 1109 ICCEP 2007 384287 Pemeliharaan CS1 Format tanggal link Gevorkian Peter 2007 Sustainable energy systems engineering the complete green building design resource McGraw Hill Professional ISBN 978 0 07 147359 0 The Nobel Prize in Physics 1921 Albert Einstein Nobel Prize official page Lashkaryov V E 1941 Investigation of a barrier layer by the thermoprobe method Diarsipkan Izv Akad Nauk SSSR Ser Fiz 5 442 446 English translation Ukr J Phys 53 53 56 2008 Light sensitive device U S Patent 2 402 662 Issue date June 1946 April 25 1954 Bell Labs Demonstrates the First Practical Silicon Solar Cell APS News American Physical Society 18 4 April 2009 Tsokos K A 28 January 2010 Physics for the IB Diploma Full Colour Cambridge University Press ISBN 978 0 521 13821 5 Perlin 1999 hlm 50 a b Perlin 1999 hlm 53 a b Williams Neville 2005 Chasing the Sun Solar Adventures Around the World New Society Publishers hlm 84 ISBN 9781550923124 Jones Geoffrey Bouamane Loubna 2012 Power from Sunshine A Business History of Solar Energy PDF Harvard Business School hlm 22 23 Perlin 1999 hlm 54 The National Science Foundation A Brief History Bab IV NSF 88 16 15 Juli 1994 diakses 20 Juni 2015 Herwig Lloyd O 1999 Cherry Hill revisited Background events and photovoltaic technology status National center for photovoltaics NCPV 15th program review meeting 462 hlm 785 Bibcode 1999AIPC 462 785H doi 10 1063 1 58015 Deyo J N Brandhorst H W Jr Forestieri A F 15 18 Nov 1976 Status of the ERDA NASA photovoltaic tests and applications project 12th IEEE Photovoltaic Specialists Conf Sửa may nước nong năng lượng hoanggiangsolar com Diakses tanggal 28 Juni 2023 The multinational connections who does what where New Scientist Vol 84 no 1177 Reed Business Information 18 Oktober 1979 ISSN 0262 4079 a b Yu Peng Wu Jiang Liu Shenting Xiong Jie Jagadish Chennupati Wang Zhiming M 2016 12 01 Design and fabrication of silicon nanowires towards efficient solar cells Nano Today 11 6 704 737 doi 10 1016 j nantod 2016 10 001 Buhayar Noah 28 January 2016 Warren Buffett controls Nevada s legacy utility Elon Musk is behind the solar company that s upending the market Let the fun begin Bloomberg Businessweek Sunny Uplands Alternative energy will no longer be alternative The Economist 21 November 2012 Diakses tanggal 28 December 2012 1 W Photovoltaic Systems DOE whitepaper August 2010 Solar Stocks Does the Punishment Fit the Crime 24 7 Wall St 6 October 2011 Retrieved 3 January 2012 Snapshot of Global PV 1992 2014 PDF International Energy Agency Photovoltaic Power Systems Programme 30 March 2015 Diarsipkan dari versi asli tanggal 30 March 2015 Solar energy Renewable energy Statistical Review of World Energy Energy economics BP bp com Mann Sander A de Wild Scholten Mariska J Fthenakis Vasilis M van Sark Wilfried G J H M Sinke Wim C 2014 11 01 The energy payback time of advanced crystalline silicon PV modules in 2020 a prospective study Progress in Photovoltaics Research and Applications 22 11 1180 1194 doi 10 1002 pip 2363 ISSN 1099 159X Jaeger Joel 20 September 2021 Explaining the Exponential Growth of Renewable Energy dalam bahasa Inggris Diakses tanggal 2021 11 08 Solar panels are a pain to recycle These companies are trying to fix that MIT Technology Review dalam bahasa Inggris Diakses tanggal 2021 11 08 Janz Stefan Reber Stefan 14 September 2015 20 Efficient Solar Cell on EpiWafer Fraunhofer ISE Diakses tanggal 15 October 2015 Driessen Marion Amiri Diana Milenkovic Nena Steinhauser Bernd Lindekugel Stefan Benick Jan Reber Stefan Janz Stefan 2016 Solar Cells with 20 Efficiency and Lifetime Evaluation of Epitaxial Wafers Energy Procedia 92 785 790 doi 10 1016 j egypro 2016 07 069 ISSN 1876 6102 Gaucher Alexandre Cattoni Andrea Dupuis Christophe Chen Wanghua Cariou Romain Foldyna Martin Lalouat Loi c Drouard Emmanuel Seassal Christian 2016 Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping Nano Letters 16 9 5358 64 Bibcode 2016NanoL 16 5358G doi 10 1021 acs nanolett 6b01240 PMID 27525513 Chen Wanghua Cariou Romain Foldyna Martin Depauw Valerie Trompoukis Christos Drouard Emmanuel Lalouat Loic Harouri Abdelmounaim Liu Jia 2016 Nanophotonics based low temperature PECVD epitaxial crystalline silicon solar cells Journal of Physics D Applied Physics 49 12 125603 Bibcode 2016JPhD 49l5603C doi 10 1088 0022 3727 49 12 125603 ISSN 0022 3727 Parameter dead url Cabarrocas tidak valid bantuan Kobayashi Eiji Watabe Yoshimi Hao Ruiying Ravi T S 2015 High efficiency heterojunction solar cells on n type kerfless mono crystalline silicon wafers by epitaxial growth Applied Physics Letters 106 22 223504 Bibcode 2015ApPhL 106v3504K doi 10 1063 1 4922196 ISSN 0003 6951 Kim D S et al 18 May 2003 String ribbon silicon solar cells with 17 8 efficiency PDF Proceedings of 3rd World Conference on Photovoltaic Energy Conversion 2003 2 hlm 1293 1296 ISBN 978 4 9901816 0 4 Diarsipkan dari versi asli PDF tanggal 2016 04 07 Diakses tanggal 2020 05 27 Wayne McMillan The Cast Mono Dilemma Error in webarchive template Check url value Empty BT Imaging Pearce J Lau A 2002 Net Energy Analysis for Sustainable Energy Production from Silicon Based Solar Cells PDF Solar Energy hlm 181 doi 10 1115 SED2002 1051 ISBN 978 0 7918 1689 9 pranala nonaktif Edoff Marika March 2012 Thin Film Solar Cells Research in an Industrial Perspective AMBIO 41 2 112 118 doi 10 1007 s13280 012 0265 6 ISSN 0044 7447 PMC 3357764 PMID 22434436 a b Fthenakis Vasilis M 2004 Life cycle impact analysis of cadmium in CdTe PV production PDF Renewable and Sustainable Energy Reviews 8 4 303 334 doi 10 1016 j rser 2003 12 001 IBM and Tokyo Ohka Kogyo Turn Up Watts on Solar Energy Production IBM Collins R W Ferlauto A S Ferreira G M Chen C Koh J Koval R J Lee Y Pearce J M Wronski C R 2003 Evolution of microstructure and phase in amorphous protocrystalline and microcrystalline silicon studied by real time spectroscopic ellipsometry Solar Energy Materials and Solar Cells 78 1 4 143 doi 10 1016 S0927 0248 02 00436 1 Pearce J M Podraza N Collins R W Al Jassim M M Jones K M Deng J Wronski C R 2007 Optimization of open circuit voltage in amorphous silicon solar cells with mixed phase amorphous nanocrystalline p type contacts of low nanocrystalline content PDF Journal of Applied Physics 101 11 114301 114301 7 Bibcode 2007JAP 101k4301P doi 10 1063 1 2714507 Diarsipkan dari versi asli PDF tanggal 13 June 2009 Parameter url status yang tidak diketahui akan diabaikan bantuan Yablonovitch Eli Miller Owen D Kurtz S R 2012 The opto electronic physics that broke the efficiency limit in solar cells 2012 38th IEEE Photovoltaic Specialists Conference hlm 001556 doi 10 1109 PVSC 2012 6317891 ISBN 978 1 4673 0066 7 Fitzky Hans G and Ebneth Harold 24 May 1983 U S Patent 4 385 102 Large area photovoltaic cell Bibliografi Sunting McDonald SA Konstantatos G Zhang S Cyr PW Klem EJ Levina L Sargent EH 2005 Solution processed PbS quantum dot infrared photodetectors and photovoltaics Nature Materials 4 2 138 42 Pemeliharaan CS1 Banyak nama authors list link PMID 15640806Pranala luar SuntingUse of solar cells in Diarsipkan 2005 08 28 di Wayback Machine Kenya and Uganda in Africa Pennicott Katie Solar cell edges towards endless energy 7 December 2001 PhysicsWeb Dye Sensitized Solar Cells Diarsipkan 2004 10 12 di Wayback Machine DYSC based on Nanocrystalline Oxide Semiconductor Films News searching Solar Cell Photovoltaic Historical Photovoltaic Solar Energy Conversion An Update Wladek Walukiewicz Materials Sciences Division Berkeley Lab Full Solar Spectrum Photovoltaic Materials Identified Diarsipkan 2008 07 02 di Wayback Machine Quote Maximum theoretically predicted efficiencies increase to 50 56 and 72 for stacks of 2 3 and 36 junctions with appropriately optimized energy gaps respectively CNET 5 12 03 SunPower Announces World s Most Efficient Low Cost Silicon Solar Cell Quote The National Renewable Energy Laboratory NREL has verified 20 4 percent conversion efficiency for the A 300 SunPower A 300 pdf Diarsipkan 2008 10 11 di Wayback Machine SunPower 1 29 March 2002 Scientists Create New Solar Cell Quote semiconducting plastic material known as P3HT 1 7 percent for sunlight 2 15 February 03 Denim solar panels to clothe future buildings Quote Unlike conventional solar cells the new cheap material has no rigid silicon base Residential Solar Power Systems Photo Gallery Examples of Photovoltaic Systems Diarsipkan 2005 08 30 di Wayback Machine How Solar Cells Work azonano com Carbon Nanotube Structures Could Provide More Efficient Solar Power for Soldiers Diarsipkan 2007 03 10 di Wayback Machine 28 February 2005 Solar energy timeline Diarsipkan 2006 06 19 di Wayback Machine Yield data Sunting http www tectosol staticip de index en htm Diarsipkan 2005 12 14 di Wayback Machine electricity yield of a solar power system http www sunny portal de Yield Portal for solar power system usersTeori Sunting National Renewable Energy Laboratory NREL Photovoltaics for Buildings PV Technology for the Home Factsheets 1993 National Renewable Energy Laboratory NREL Photovoltaics Unlimited Electrical Energy From the Sun BrokenLink Electrical models of solar cells Diarsipkan 2005 09 24 di Wayback Machine Swakriya Sunting PEC Photo Electro Chromic How to Build Your Own Solar Cell Diarsipkan 2007 04 02 di Wayback Machine DIY Do It Yourself Nanocrystalline Dye Sensitized Solar Cell Kit Quote sunlight to electrical energy conversion efficiency is between 1 and 0 5 Cuprous oxide solar cellsMake a solar cell in your kitchen A flat panel solar battery From How to Build a Solar Cell That Really Works by Walt NoonIndeks Sunting Open Directory Project Solar Diarsipkan 2005 08 26 di Wayback Machine Newsgroup Sunting alt solar photovoltaicPaten Sunting US2402662 Light sensitive device R S Ohl US1289369 Method of increasing the capacity of photosenitive electrical cells Diperoleh dari https id wikipedia org w index php title Sel surya amp oldid 23756350