www.wikidata.id-id.nina.az
Halaman ini berisi artikel tentang isotop plutonium Untuk film yang juga dikenal dengan The Half Life of Timofey Berezin lihat Pu 239 film Plutonium 239 239Pu atau Pu 239 adalah sebuah isotop plutonium Plutonium 239 merupakan isotop fisil utama yang digunakan untuk produksi senjata nuklir meskipun uranium 235 juga digunakan untuk tujuan itu Plutonium 239 juga merupakan salah satu dari tiga isotop utama yang terbukti dapat digunakan sebagai bahan bakar dalam reaktor nuklir spektrum termal bersama dengan uranium 235 dan uranium 233 Plutonium 239 memiliki waktu paruh selama 24 110 tahun 1 Plutonium 239 239PuCincin plutonium murni 99 96 UmumSimbol239PuNamaplutonium 239 Pu 239Proton Z 94Neutron N 145Data nuklidaWaktu paruh t1 2 24 110 tahunIsotop induk243Cm a 239Am EC 239Np b Produk peluruhan235UMassa isotop239 0521634 uSpin Mode peluruhanMode peluruhanEnergi peluruhan MeV Peluruhan alfa5 156Isotop plutonium Tabel nuklida lengkap Daftar isi 1 Sifat nuklir 2 Produksi 2 1 Plutonium tingkat super 3 Dalam reaktor tenaga nuklir 4 Bahaya 5 Lihat pula 6 Referensi 7 Pranala luarSifat nuklir SuntingSifat nuklir dari plutonium 239 serta kemampuannya untuk menghasilkan sejumlah besar 239Pu yang hampir murni lebih murah daripada uranium 235 jenis senjata yang sangat diperkaya menyebabkan penggunaannya dalam senjata nuklir dan pembangkit listrik tenaga nuklir Fisi atom uranium 235 dalam reaktor pembangkit listrik tenaga nuklir menghasilkan dua hingga tiga neutron dan neutron ini dapat diserap oleh uranium 238 untuk menghasilkan plutonium 239 dan isotop lainnya Plutonium 239 juga dapat menyerap neutron dan fisi bersama dengan uranium 235 dalam reaktor Dari semua bahan bakar nuklir yang umum 239Pu memiliki massa kritis paling kecil Massa kritis bulat yang tidak terpengaruh memiliki diameter sekitar 11 kg 24 2 lbs 2 10 2 cm 4 Dengan menggunakan pemicu yang sesuai reflektor neutron geometri ledakan dan tamper massa kritis bisa kurang dari setengahnya Optimasi ini biasanya membutuhkan organisasi pengembangan nuklir besar yang didukung oleh negara yang berdaulat Pembelahan satu atom 239Pu menghasilkan 207 1 MeV 3 318 10 11 J yaitu 19 98 TJ mol 83 61 TJ kg 3 atau sekitar 23 gigawatt jam kg Sumber radiasi fisi termal 239Pu Rata rata energi yang dilepaskan MeV 3 Energi kinetik fragmen fisi 175 8Energi kinetik neutron cepat 5 9Energi yang dibawa oleh sinar g yang cepat 7 8Total energi sesaat 189 5Energi partikel b 5 3Energi anti neutrino 7 1Energi sinar g yang tertunda 5 2Total energi dari produk fisi yang meluruh 17 6Energi yang dilepaskan oleh penangkapan radiasi neutron cepat 11 5Total panas yang dilepaskan dalam reaktor spektrum termal anti neutrino tidak berkontribusi 211 5Produksi SuntingPlutonium dibuat dari uranium 238 239Pu biasanya dibuat dalam reaktor nuklir dengan transmutasi atom individu dari salah satu isotop uranium yang ada di batang bahan bakar Kadang kadang ketika sebuah atom 238U terkena radiasi neutron intinya akan menangkap neutron mengubahnya menjadi 239U Hal ini dapat terjadi lebih mudah dengan energi kinetik yang lebih rendah karena aktivasi fisi 238U adalah 6 6 MeV 239U kemudian dengan cepat mengalami dua peluruhan b emisi elektron dan anti neutrino n e displaystyle bar nu e nbsp meninggalkan proton peluruhan b pertama mengubah 239U menjadi neptunium 239 dan peluruhan b kedua mengubah 239Np menjadi 239Pu U 92 238 n 0 1 U 92 239 23 5 mnt b Np 93 239 2 356 hri b Pu 94 239 displaystyle ce 238 92 U 1 0 n gt 239 92 U gt beta 23 5 ce mnt 239 93 Np gt beta 2 356 ce hri 239 94 Pu nbsp Aktivitas fisi relatif jarang sehingga bahkan setelah paparan yang signifikan 239Pu masih bercampur dengan banyak 238U dan mungkin isotop uranium lainnya oksigen komponen lain dari bahan asli dan produk fisi Hanya jika bahan bakar telah terpapar selama beberapa hari di dalam reaktor 239Pu dapat dipisahkan secara kimia dari bahan lainnya untuk menghasilkan logam 239Pu dengan kemurnian tinggi 239Pu memiliki kemungkinan fisi yang lebih tinggi daripada 235U dan jumlah neutron yang dihasilkan lebih banyak per peristiwa fisi sehingga memiliki massa kritis yang lebih kecil 239Pu murni juga memiliki tingkat emisi neutron yang cukup rendah karena adanya fisi spontan 10 fisi s kg sehingga memungkinkannya untuk mengumpulkan massa yang sangat superkritis sebelum reaksi berantai detonasi dimulai Namun dalam praktiknya plutonium yang dibiakkan reaktor akan selalu mengandung sejumlah 240Pu karena kecenderungan 239Pu untuk menyerap neutron tambahan selama produksi 240Pu memiliki tingkat kejadian fisi spontan yang tinggi 415 000 fisi s kg menjadikannya kontaminan yang tidak diinginkan Akibatnya plutonium yang mengandung fraksi 240Pu yang signifikan tidak cocok untuk digunakan dalam senjata nuklir ia memancarkan radiasi neutron membuat penanganan menjadi lebih sulit dan kehadirannya dapat menyebabkan kegagalan di mana ledakan kecil terjadi menghancurkan senjata tetapi tidak menyebabkan fisi sebagian besar bahan bakar Namun dalam senjata nuklir modern yang menggunakan generator neutron untuk inisiasi dan peningkatan fusi untuk memasok neutron ekstra kegagalan tidak menjadi masalah Karena keterbatasan inilah senjata berbasis plutonium haruslah jenis delakan bukan jenis bedil Selain itu 239Pu dan 240Pu tidak dapat dibedakan secara kimia sehingga diperlukan pemisahan isotop yang mahal dan sulit untuk memisahkannya Plutonium tingkat senjata didefinisikan mengandung tidak lebih dari 7 240Pu ini dicapai dengan hanya memaparkan 238U pada sumber neutron dalam waktu singkat untuk meminimalkan 240Pu yang dihasilkan Plutonium diklasifikasikan menurut persentase kontaminan plutonium 240 yang dikandungnya Tingkat super 2 3 Tingkat senjata 3 7 Tingkat bahan bakar 7 18 Tingkat reaktor 18 atau lebihReaktor nuklir yang digunakan untuk memproduksi plutonium untuk senjata umumnya memiliki sarana untuk mengekspos 238U ke radiasi neutron dan untuk mengganti 238U yang disinari dengan 238U yang baru Reaktor yang beroperasi dengan uranium yang tidak diperkaya atau cukup diperkaya mengandung banyak 238U Namun sebagian besar desain reaktor nuklir komersial mengharuskan seluruh reaktor dimatikan seringkali selama berminggu minggu untuk mengubah unsur bahan bakar Oleh karena itu mereka menghasilkan plutonium dalam campuran isotop yang tidak cocok untuk konstruksi senjata Reaktor semacam itu dapat memiliki mesin yang ditambahkan yang memungkinkan slug 238U ditempatkan di dekat inti dan sering diganti atau dapat sering dimatikan sehingga proliferasi menjadi perhatian untuk alasan ini Badan Tenaga Atom Internasional sering memeriksa reaktor berlisensi Beberapa desain reaktor daya komersial seperti reaktor bolshoy moshchnosti kanalniy RBMK dan reaktor air berat bertekanan PHWR memungkinkan pengisian bahan bakar tanpa penutupan dan dapat menimbulkan risiko proliferasi Faktanya RBMK dibangun oleh Uni Soviet selama Perang Dingin jadi terlepas dari tujuan mereka yang tampaknya damai kemungkinan produksi plutonium adalah kriteria desain Sebaliknya uranium alam yang dimoderasi air berat CANDU Kanada berbahan bakar uranium reaktor juga dapat diisi bahan bakar saat beroperasi tetapi biasanya menggunakan sebagian besar 239Pu yang dihasilkannya di tempat dengan demikian tidak hanya secara inheren kurang proliferatif daripada kebanyakan reaktor tetapi bahkan dapat dioperasikan sebagai insinerator aktinida 4 IFR Reaktor cepat integral Amerika juga dapat dioperasikan dalam mode insinerasi memiliki beberapa keuntungan dengan tidak mengakumulasi isotop plutonium 242 atau aktinida berumur panjang yang tidak dapat dengan mudah dibakar kecuali dalam reaktor cepat Juga bahan bakar IFR memiliki proporsi isotop yang dapat terbakar yang tinggi sedangkan di CANDU bahan inert diperlukan untuk mengencerkan bahan bakar ini berarti IFR dapat membakar fraksi bahan bakar yang lebih tinggi sebelum memerlukan pemrosesan ulang Kebanyakan plutonium diproduksi di reaktor penelitian atau reaktor produksi plutonium yang disebut reaktor pembiak karena mereka menghasilkan lebih banyak plutonium daripada yang mereka konsumsi bahan bakarnya pada prinsipnya reaktor semacam itu menggunakan uranium alam dengan sangat efisien Dalam praktiknya konstruksi dan pengoperasiannya cukup sulit sehingga umumnya hanya digunakan untuk memproduksi plutonium Reaktor pembiak umumnya tetapi tidak selalu merupakan reaktor cepat karena neutron cepat agak lebih efisien dalam produksi plutonium Plutonium 239 lebih sering digunakan dalam senjata nuklir daripada uranium 235 karena lebih mudah diperoleh dalam jumlah massa kritis Baik plutonium 239 maupun uranium 235 diperoleh dari uranium alami yang terutama terdiri dari uranium 238 tetapi mengandung jejak isotop uranium lain seperti uranium 235 Proses pengayaan uranium yaitu meningkatkan rasio 235U ke 238U menjadi jenis senjata umumnya merupakan proses yang lebih panjang dan mahal daripada produksi plutonium 239 dari 238U dan pemrosesan ulang berikutnya Plutonium tingkat super Sunting Bahan bakar fisi tingkat super yang memiliki radioaktivitas lebih sedikit digunakan pada tahap utama senjata Angkatan Laut Amerika Serikat menggantikan plutonium konvensional yang digunakan dalam versi Angkatan Udara Tingkat super merupakan istilah industri untuk paduan plutonium yang mengandung fraksi 239Pu yang sangat tinggi gt 95 meninggalkan jumlah 240Pu yang sangat rendah yang merupakan isotop fisi spontan yang tinggi lihat di atas Plutonium tersebut dihasilkan dari batang bahan bakar yang telah diiradiasi dalam waktu yang sangat singkat yang diukur dalam pembakaran MW hari ton Waktu iradiasi yang rendah seperti itu membatasi jumlah penangkapan neutron tambahan dan oleh karena itu penumpukan produk isotop alternatif seperti 240Pu dalam batang dan juga akibatnya jauh lebih mahal untuk diproduksi membutuhkan lebih banyak batang yang diiradiasi dan diproses untuk jumlah plutonium tertentu Plutonium 240 selain menjadi pemancar neutron setelah fisi juga merupakan pemancar gama dan bertanggung jawab atas sebagian besar radiasi dari senjata nuklir yang disimpan Baik saat berpatroli atau di pelabuhan anggota awak kapal selam secara rutin tinggal dan bekerja sangat dekat dengan senjata nuklir yang disimpan di ruang torpedo dan tabung rudal tidak seperti rudal Angkatan Udara di mana paparannya relatif singkat Kebutuhan untuk mengurangi paparan radiasi membenarkan biaya tambahan dari paduan tingkat super premium yang digunakan pada banyak senjata nuklir angkatan laut Plutonium tingkat super digunakan dalam hulu ledak W80 Dalam reaktor tenaga nuklir SuntingDalam setiap reaktor nuklir yang beroperasi yang mengandung 238U beberapa plutonium 239 akan terakumulasi dalam bahan bakar nuklir 5 Tidak seperti reaktor yang digunakan untuk memproduksi plutonium tingkat senjata reaktor tenaga nuklir komersial biasanya beroperasi pada pembakaran tinggi yang memungkinkan sejumlah besar plutonium menumpuk dalam bahan bakar reaktor yang diiradiasi Plutonium 239 akan ada baik di inti reaktor selama operasi maupun dalam bahan bakar nuklir bekas yang telah dikeluarkan dari reaktor pada akhir masa pakai perakitan bahan bakar biasanya beberapa tahun Bahan bakar nuklir bekas biasanya mengandung sekitar 0 8 plutonium 239 Plutonium 239 yang ada dalam bahan bakar reaktor dapat menyerap neutron dan fisi seperti halnya uranium 235 Karena plutonium 239 terus menerus dibuat di teras reaktor selama operasi penggunaan plutonium 239 sebagai bahan bakar nuklir di pembangkit listrik dapat terjadi tanpa pemrosesan ulang bahan bakar nuklir bekas plutonium 239 dibelah dalam batang bahan bakar yang sama di mana ia diproduksi Pembelahan plutonium 239 menyediakan lebih dari sepertiga dari total energi yang dihasilkan di pembangkit listrik tenaga nuklir komersial biasa 6 Bahan bakar reaktor akan mengakumulasi lebih dari 0 8 plutonium 239 selama masa pakainya jika beberapa plutonium 239 tidak terus menerus dibakar dengan pembelahan Sebagian kecil plutonium 239 dapat dengan sengaja ditambahkan ke bahan bakar nuklir baru Bahan bakar tersebut disebut bahan bakar MOX mixed oxide karena mengandung campuran uranium dioksida UO2 dan plutonium dioksida PuO2 Penambahan plutonium 239 mengurangi kebutuhan untuk memperkaya uranium dalam bahan bakar Bahaya SuntingPlutonium 239 memancarkan partikel alfa menjadi uranium 235 Sebagai pemancar alfa plutonium 239 tidak terlalu berbahaya sebagai sumber radiasi eksternal tetapi jika tertelan atau terhirup sebagai debu sangat berbahaya dan karsinogenik Diperkirakan jika satu pon 454 gram plutonium yang dihirup sebagai debu plutonium oksida dapat menyebabkan kanker pada dua juta orang 7 Namun plutonium yang tertelan jauh lebih tidak berbahaya karena hanya sebagian kecil yang diserap dalam saluran pencernaan 8 9 800 mg plutonium tidak akan menyebabkan risiko kesehatan yang besar sejauh menyangkut radiasi 7 Sebagai logam berat plutonium juga beracun secara kimiawi Plutonium jenis senjata dengan lebih dari 90 239Pu digunakan untuk membuat senjata nuklir dan memiliki banyak keunggulan dibandingkan bahan fisil lainnya untuk tujuan itu Proporsi 239Pu yang lebih rendah akan membuat desain senjata yang andal menjadi sulit atau tidak mungkin ini disebabkan oleh fisi spontan dan dengan demikian produksi neutron dari 240Pu yang tidak diinginkan Lihat pula SuntingDesain Teller UlamReferensi Sunting Physical Nuclear and Chemical Properties of Plutonium Institute for Energy and Environmental Research Diakses tanggal 18 Juni 2022 FAS Nuclear Weapons Design FAQ Diarsipkan 26 Desember 2008 di Wayback Machine Diakses tanggal 18 Juni 2022 a b Table of Physical and Chemical Constants Sec 4 7 1 Nuclear Fission Kaye amp Laby Online Diarsipkan dari versi asli tanggal 5 Maret 2010 Diakses tanggal 18 Juni 2022 Parameter url status yang tidak diketahui akan diabaikan bantuan Whitlock Jeremy J 14 April 2000 The Evolution of CANDU Fuel Cycles and their Potential Contribution to World Peace Hala Jiri Navratil James D 2003 Radioactivity Ionizing Radiation and Nuclear Energy Brno Konvoj hlm 102 ISBN 80 7302 053 X Information Paper 15 Plutonium World Nuclear Association Diarsipkan dari versi asli tanggal 30 Maret 2010 Diakses tanggal 18 Juni 2022 a b Cohen Bernard L 1990 Chapter 13 Plutonium and bombs nbsp The Nuclear Energy Option nbsp Plenum Press ISBN 978 0306435676 Cohen Bernard L 1990 Bab 11 HAZARDS OF HIGH LEVEL RADIOACTIVE WASTE THE GREAT MYTH nbsp The Nuclear Energy Option nbsp Plenum Press ISBN 978 0306435676 Emsley John 2001 Plutonium Nature s Building Blocks An A Z Guide to the Elements Oxford UK Oxford University Press hlm 324 329 ISBN 0 19 850340 7 Pranala luar Sunting Inggris NLM Bank Data Zat Berbahaya Plutonium Radioaktif Inggris Tabel nuklida dengan data 239Pu di Kaye amp Laby Online Inggris Waktu Paruh Plutonium 239 Diarsipkan 15 Agustus 2011 di Wayback Machine Lebih ringan plutonium 238 Plutonium 239 adalah isotop plutonium Lebih berat plutonium 240Produk peluruhan dari kurium 243 a amerisium 239 EC neptunium 239 b Rantai peluruhan dari plutonium 239 Meluruh menjadi uranium 235 a Diperoleh dari https id wikipedia org w index php title Plutonium 239 amp oldid 23695266